Answer
Verified
426.3k+ views
Hint: It is given as \[\text{A}\] is directly proportional to \[\text{B}\]. Then we can write this as \[\text{A }\!\!\alpha\!\!\text{ B}\] and we can equate it by introducing a constant between \[\text{A}\] and \[\text{B}\] as \[\text{A = KB}\] where \[\text{K}\] is constant.
For finding the value of \[\text{K}\] you need the values of \[\text{A}\] and \[\text{B}\] and then you can put it in equation to get the value of \[\text{K}\].
Complete step by step solution:It is given in the question that \[\text{Y}\] is inversely proportional to the square of \[\text{X}\] we can write it as \[\text{Y }\alpha \text{ }\dfrac{1}{{{x}^{2}}}\] and we can introduce constant \[\text{C}\]
\[\therefore \text{Y = }\dfrac{\text{C}}{{{x}^{2}}}\,......\,(1)\]
We have to find a equation connecting \[\text{Y}\] and \[\text{X}\] when \[\text{Y = 50}\] and \[\text{X = 2}\]
So, the proportional equation becomes
\[50\,=\,\dfrac{\text{C}}{{{\left( 2 \right)}^{2}}}\]
\[\text{C}\,\text{=}\,\text{50}\times {{2}^{2}}\]
\[\text{50}\times 4\]
\[\text{C}\,=\,200\]
Putting the value of \[\text{C}\] in equation \[(1)\] we get,
\[\text{Y}\,=\,\dfrac{200}{{{\text{X}}^{2}}}\], which could be written as \[{{x}^{2}}y\,\,=\,200\]
This is an equation connecting \[\text{Y}\] and \[\text{X}\] when \[\text{Y = 50}\] and \[\text{X = 2}\]
Additional Information:
When \[y\] is inversely proportional to the square of \[x\]. It means if \[x\] is increased two times then, the value of \[y\] decreases four times.
For example:
If \[x\,=\,2\]
\[y\,=\,\dfrac{\text{C}}{{{x}^{2}}}\,=\,y\,=\,\dfrac{\text{C}}{{{2}^{2}}}\,=\,\dfrac{\text{C}}{4}\]
The graph that represents this equation clearly.
Let us discuss the case where \[x\] is positive, if \[x\] is positive, then
As \[x\to \infty ,\,y\to 0\] and vice versa.
i.e if \[x\] gets larger, \[y\] gets smaller and vice versa.
Sometimes the question comes \[y\] is inversely proportional to \[x\] it can simply be written as \[y\,=\,\dfrac{\text{C}}{x}\,\]
Note:
When putting values of \[y\] and \[x\] in the given equation carefully solve and find the value of the constant you assumed.
It is not necessary to assume constant as \[\text{C}\] you can assume any variable you wish.
The sign \[\alpha \] is used for both inversely proportional and directly proportional questions.
For finding the value of \[\text{K}\] you need the values of \[\text{A}\] and \[\text{B}\] and then you can put it in equation to get the value of \[\text{K}\].
Complete step by step solution:It is given in the question that \[\text{Y}\] is inversely proportional to the square of \[\text{X}\] we can write it as \[\text{Y }\alpha \text{ }\dfrac{1}{{{x}^{2}}}\] and we can introduce constant \[\text{C}\]
\[\therefore \text{Y = }\dfrac{\text{C}}{{{x}^{2}}}\,......\,(1)\]
We have to find a equation connecting \[\text{Y}\] and \[\text{X}\] when \[\text{Y = 50}\] and \[\text{X = 2}\]
So, the proportional equation becomes
\[50\,=\,\dfrac{\text{C}}{{{\left( 2 \right)}^{2}}}\]
\[\text{C}\,\text{=}\,\text{50}\times {{2}^{2}}\]
\[\text{50}\times 4\]
\[\text{C}\,=\,200\]
Putting the value of \[\text{C}\] in equation \[(1)\] we get,
\[\text{Y}\,=\,\dfrac{200}{{{\text{X}}^{2}}}\], which could be written as \[{{x}^{2}}y\,\,=\,200\]
This is an equation connecting \[\text{Y}\] and \[\text{X}\] when \[\text{Y = 50}\] and \[\text{X = 2}\]
Additional Information:
When \[y\] is inversely proportional to the square of \[x\]. It means if \[x\] is increased two times then, the value of \[y\] decreases four times.
For example:
If \[x\,=\,2\]
\[y\,=\,\dfrac{\text{C}}{{{x}^{2}}}\,=\,y\,=\,\dfrac{\text{C}}{{{2}^{2}}}\,=\,\dfrac{\text{C}}{4}\]
The graph that represents this equation clearly.
Let us discuss the case where \[x\] is positive, if \[x\] is positive, then
As \[x\to \infty ,\,y\to 0\] and vice versa.
i.e if \[x\] gets larger, \[y\] gets smaller and vice versa.
Sometimes the question comes \[y\] is inversely proportional to \[x\] it can simply be written as \[y\,=\,\dfrac{\text{C}}{x}\,\]
Note:
When putting values of \[y\] and \[x\] in the given equation carefully solve and find the value of the constant you assumed.
It is not necessary to assume constant as \[\text{C}\] you can assume any variable you wish.
The sign \[\alpha \] is used for both inversely proportional and directly proportional questions.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE