For x, a>0 the roots of the equation ${{\log }_{ax}}a+{{\log }_{x}}{{a}^{2}}+{{\log }_{{{a}^{2}}x}}{{a}^{3}}=0$ is (are) given by
(a) ${{a}^{-\dfrac{4}{3}}}$
(b) ${{a}^{-\dfrac{3}{4}}}$
(c) ${{a}^{-\dfrac{1}{2}}}$
(d) ${{a}^{-\dfrac{2}{3}}}$
Answer
Verified
502.5k+ views
Hint: First convert out given expression using the formula, ${{\log }_{a}}x=\dfrac{\log a}{\log x} ,\log (cd)=\log c+\log d,\log \left( {{d}^{n}} \right)=n\log d$. Then divide the whole expression by common term. Then transform the obtained expression using ${{\log }_{a}}x=t$, then find the value of ‘t’ and then transform it to get values of x in terms of a.
Complete step-by-step answer:
We are given that for x, a > 0 we have to find the roots of equation
${{\log }_{ax}}a+{{\log }_{x}}{{a}^{2}}+{{\log }_{{{a}^{2}}x}}{{a}^{3}}=0.............\left( i \right)$
Now to proceed the equation we have to use formula such as,
${{\log }_{c}}d=\dfrac{\log d}{\log c}$
By using this we can transform equation (i) as,
$\dfrac{\log a}{\log ax}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}x}=0............\left( ii \right)$
Now we will use the formula such as,
log(cd) = log c +log d
By using this we can write equation (ii) as,
$\dfrac{\log a}{\log a+\log x}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}+\log x}=0............\left( iii \right)$
Now we will use the formula such as,
$\log \left( {{d}^{n}} \right)=n\log d$
By using this we can write the equation (iii) as,
$\dfrac{\log a}{\log a+\log x}+\dfrac{2\log a}{\log x}+\dfrac{3\log a}{2\log a+\log x}=0............\left( iv \right)$
Now we will divide log a from both numerator and denominator of the term of equation (iv) we get,
$\dfrac{1}{1+\dfrac{\log x}{\log a}}+\dfrac{2}{\dfrac{\log x}{\log a}}+\dfrac{3}{2+\dfrac{\log x}{\log a}}=0...............\left( v \right)$
In equation (v) we will use the formula, $\dfrac{\log c}{\log d}={{\log }_{d}}c$ we get,
$\dfrac{1}{1+{{\log }_{a}}x}+\dfrac{2}{{{\log }_{a}}x}+\dfrac{3}{2+{{\log }_{a}}x}=0..............\left( vi \right)$
Now we will substitute ${{\log }_{a}}x=t$ , we will transform equation (vi) as
\[\dfrac{1}{1+t}+\dfrac{2}{t}+\dfrac{3}{2+t}=0............\left( vii \right)\]
Taking LCM in (vii) we get,
$\dfrac{t\left( 2+t \right)+2\left( 1+t \right)(2+t)+3t\left( t+1 \right)}{\left( 1+t \right)t\left( 2+t \right)}=0$
On cross multiplication we get,
t(2 + t) + 2(1 + t)(2+t) +3t (t + 1) = 0
On further simplification we get,
$\begin{align}
& 2t+{{t}^{2}}+2(2+t+2t+{{t}^{2}})+3{{t}^{2}}+3t=0 \\
& \Rightarrow 2t+{{t}^{2}}+4+2t+4t+2{{t}^{2}}+3{{t}^{2}}+3t=0 \\
\end{align}$
On simplification we get,
$6{{t}^{2}}+11t+4=0$
This is a quadratic equation. We will solve it by splitting the middle term, we get
$\begin{align}
& 6{{t}^{2}}+8t+3t+4=0 \\
& \Rightarrow 2t\left( 3t+4 \right)+1\left( 3t+4 \right)=0 \\
& \Rightarrow (3t+4)(2t+1)=0 \\
& \Rightarrow 3t+4=0,2t+1=0 \\
& \Rightarrow t=-\dfrac{4}{3},t=-\dfrac{1}{2} \\
\end{align}$
So, finally the value for $t=\dfrac{-4}{3},\dfrac{-1}{2}$.
We had assumed,
${{\log }_{a}}x=t$
Substituting the value of ‘t’, we get
${{\log }_{a}}x=\dfrac{-4}{3}$ and ${{\log }_{a}}x=-\dfrac{1}{2}$
Now we will use the transformation that is, ${{\log }_{b}}a=c\Rightarrow a={{b}^{c}}$. By using this in above equation, we get
$x={{a}^{-\dfrac{4}{3}}}$ and $x={{a}^{\dfrac{-1}{2}}}$ respectively.
Therefore, the correct answer is option (a) and (c).
Note: Students should be careful while calculating and finding values of ${{\log }_{a}}x$ also using transformation of changing ${{\log }_{a}}x=t$as $x={{a}^{t}}$.
Another way to solve the quadratic equation is using the formula, $t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
Complete step-by-step answer:
We are given that for x, a > 0 we have to find the roots of equation
${{\log }_{ax}}a+{{\log }_{x}}{{a}^{2}}+{{\log }_{{{a}^{2}}x}}{{a}^{3}}=0.............\left( i \right)$
Now to proceed the equation we have to use formula such as,
${{\log }_{c}}d=\dfrac{\log d}{\log c}$
By using this we can transform equation (i) as,
$\dfrac{\log a}{\log ax}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}x}=0............\left( ii \right)$
Now we will use the formula such as,
log(cd) = log c +log d
By using this we can write equation (ii) as,
$\dfrac{\log a}{\log a+\log x}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}+\log x}=0............\left( iii \right)$
Now we will use the formula such as,
$\log \left( {{d}^{n}} \right)=n\log d$
By using this we can write the equation (iii) as,
$\dfrac{\log a}{\log a+\log x}+\dfrac{2\log a}{\log x}+\dfrac{3\log a}{2\log a+\log x}=0............\left( iv \right)$
Now we will divide log a from both numerator and denominator of the term of equation (iv) we get,
$\dfrac{1}{1+\dfrac{\log x}{\log a}}+\dfrac{2}{\dfrac{\log x}{\log a}}+\dfrac{3}{2+\dfrac{\log x}{\log a}}=0...............\left( v \right)$
In equation (v) we will use the formula, $\dfrac{\log c}{\log d}={{\log }_{d}}c$ we get,
$\dfrac{1}{1+{{\log }_{a}}x}+\dfrac{2}{{{\log }_{a}}x}+\dfrac{3}{2+{{\log }_{a}}x}=0..............\left( vi \right)$
Now we will substitute ${{\log }_{a}}x=t$ , we will transform equation (vi) as
\[\dfrac{1}{1+t}+\dfrac{2}{t}+\dfrac{3}{2+t}=0............\left( vii \right)\]
Taking LCM in (vii) we get,
$\dfrac{t\left( 2+t \right)+2\left( 1+t \right)(2+t)+3t\left( t+1 \right)}{\left( 1+t \right)t\left( 2+t \right)}=0$
On cross multiplication we get,
t(2 + t) + 2(1 + t)(2+t) +3t (t + 1) = 0
On further simplification we get,
$\begin{align}
& 2t+{{t}^{2}}+2(2+t+2t+{{t}^{2}})+3{{t}^{2}}+3t=0 \\
& \Rightarrow 2t+{{t}^{2}}+4+2t+4t+2{{t}^{2}}+3{{t}^{2}}+3t=0 \\
\end{align}$
On simplification we get,
$6{{t}^{2}}+11t+4=0$
This is a quadratic equation. We will solve it by splitting the middle term, we get
$\begin{align}
& 6{{t}^{2}}+8t+3t+4=0 \\
& \Rightarrow 2t\left( 3t+4 \right)+1\left( 3t+4 \right)=0 \\
& \Rightarrow (3t+4)(2t+1)=0 \\
& \Rightarrow 3t+4=0,2t+1=0 \\
& \Rightarrow t=-\dfrac{4}{3},t=-\dfrac{1}{2} \\
\end{align}$
So, finally the value for $t=\dfrac{-4}{3},\dfrac{-1}{2}$.
We had assumed,
${{\log }_{a}}x=t$
Substituting the value of ‘t’, we get
${{\log }_{a}}x=\dfrac{-4}{3}$ and ${{\log }_{a}}x=-\dfrac{1}{2}$
Now we will use the transformation that is, ${{\log }_{b}}a=c\Rightarrow a={{b}^{c}}$. By using this in above equation, we get
$x={{a}^{-\dfrac{4}{3}}}$ and $x={{a}^{\dfrac{-1}{2}}}$ respectively.
Therefore, the correct answer is option (a) and (c).
Note: Students should be careful while calculating and finding values of ${{\log }_{a}}x$ also using transformation of changing ${{\log }_{a}}x=t$as $x={{a}^{t}}$.
Another way to solve the quadratic equation is using the formula, $t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
State the laws of reflection of light