# For x, a>0 the roots of the equation ${{\log }_{ax}}a+{{\log }_{x}}{{a}^{2}}+{{\log }_{{{a}^{2}}x}}{{a}^{3}}=0$ is (are) given by

(a) ${{a}^{-\dfrac{4}{3}}}$

(b) ${{a}^{-\dfrac{3}{4}}}$

(c) ${{a}^{-\dfrac{1}{2}}}$

(d) ${{a}^{-\dfrac{2}{3}}}$

Answer

Verified

362.1k+ views

Hint: First convert out given expression using the formula, ${{\log }_{a}}x=\dfrac{\log a}{\log x} ,\log (cd)=\log c+\log d,\log \left( {{d}^{n}} \right)=n\log d$. Then divide the whole expression by common term. Then transform the obtained expression using ${{\log }_{a}}x=t$, then find the value of ‘t’ and then transform it to get values of x in terms of a.

Complete step-by-step answer:

We are given that for x, a > 0 we have to find the roots of equation

${{\log }_{ax}}a+{{\log }_{x}}{{a}^{2}}+{{\log }_{{{a}^{2}}x}}{{a}^{3}}=0.............\left( i \right)$

Now to proceed the equation we have to use formula such as,

${{\log }_{c}}d=\dfrac{\log d}{\log c}$

By using this we can transform equation (i) as,

$\dfrac{\log a}{\log ax}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}x}=0............\left( ii \right)$

Now we will use the formula such as,

log(cd) = log c +log d

By using this we can write equation (ii) as,

$\dfrac{\log a}{\log a+\log x}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}+\log x}=0............\left( iii \right)$

Now we will use the formula such as,

$\log \left( {{d}^{n}} \right)=n\log d$

By using this we can write the equation (iii) as,

$\dfrac{\log a}{\log a+\log x}+\dfrac{2\log a}{\log x}+\dfrac{3\log a}{2\log a+\log x}=0............\left( iv \right)$

Now we will divide log a from both numerator and denominator of the term of equation (iv) we get,

$\dfrac{1}{1+\dfrac{\log x}{\log a}}+\dfrac{2}{\dfrac{\log x}{\log a}}+\dfrac{3}{2+\dfrac{\log x}{\log a}}=0...............\left( v \right)$

In equation (v) we will use the formula, $\dfrac{\log c}{\log d}={{\log }_{d}}c$ we get,

$\dfrac{1}{1+{{\log }_{a}}x}+\dfrac{2}{{{\log }_{a}}x}+\dfrac{3}{2+{{\log }_{a}}x}=0..............\left( vi \right)$

Now we will substitute ${{\log }_{a}}x=t$ , we will transform equation (vi) as

\[\dfrac{1}{1+t}+\dfrac{2}{t}+\dfrac{3}{2+t}=0............\left( vii \right)\]

Taking LCM in (vii) we get,

$\dfrac{t\left( 2+t \right)+2\left( 1+t \right)(2+t)+3t\left( t+1 \right)}{\left( 1+t \right)t\left( 2+t \right)}=0$

On cross multiplication we get,

t(2 + t) + 2(1 + t)(2+t) +3t (t + 1) = 0

On further simplification we get,

$\begin{align}

& 2t+{{t}^{2}}+2(2+t+2t+{{t}^{2}})+3{{t}^{2}}+3t=0 \\

& \Rightarrow 2t+{{t}^{2}}+4+2t+4t+2{{t}^{2}}+3{{t}^{2}}+3t=0 \\

\end{align}$

On simplification we get,

$6{{t}^{2}}+11t+4=0$

This is a quadratic equation. We will solve it by splitting the middle term, we get

$\begin{align}

& 6{{t}^{2}}+8t+3t+4=0 \\

& \Rightarrow 2t\left( 3t+4 \right)+1\left( 3t+4 \right)=0 \\

& \Rightarrow (3t+4)(2t+1)=0 \\

& \Rightarrow 3t+4=0,2t+1=0 \\

& \Rightarrow t=-\dfrac{4}{3},t=-\dfrac{1}{2} \\

\end{align}$

So, finally the value for $t=\dfrac{-4}{3},\dfrac{-1}{2}$.

We had assumed,

${{\log }_{a}}x=t$

Substituting the value of ‘t’, we get

${{\log }_{a}}x=\dfrac{-4}{3}$ and ${{\log }_{a}}x=-\dfrac{1}{2}$

Now we will use the transformation that is, ${{\log }_{b}}a=c\Rightarrow a={{b}^{c}}$. By using this in above equation, we get

$x={{a}^{-\dfrac{4}{3}}}$ and $x={{a}^{\dfrac{-1}{2}}}$ respectively.

Therefore, the correct answer is option (a) and (c).

Note: Students should be careful while calculating and finding values of ${{\log }_{a}}x$ also using transformation of changing ${{\log }_{a}}x=t$as $x={{a}^{t}}$.

Another way to solve the quadratic equation is using the formula, $t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.

Complete step-by-step answer:

We are given that for x, a > 0 we have to find the roots of equation

${{\log }_{ax}}a+{{\log }_{x}}{{a}^{2}}+{{\log }_{{{a}^{2}}x}}{{a}^{3}}=0.............\left( i \right)$

Now to proceed the equation we have to use formula such as,

${{\log }_{c}}d=\dfrac{\log d}{\log c}$

By using this we can transform equation (i) as,

$\dfrac{\log a}{\log ax}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}x}=0............\left( ii \right)$

Now we will use the formula such as,

log(cd) = log c +log d

By using this we can write equation (ii) as,

$\dfrac{\log a}{\log a+\log x}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}+\log x}=0............\left( iii \right)$

Now we will use the formula such as,

$\log \left( {{d}^{n}} \right)=n\log d$

By using this we can write the equation (iii) as,

$\dfrac{\log a}{\log a+\log x}+\dfrac{2\log a}{\log x}+\dfrac{3\log a}{2\log a+\log x}=0............\left( iv \right)$

Now we will divide log a from both numerator and denominator of the term of equation (iv) we get,

$\dfrac{1}{1+\dfrac{\log x}{\log a}}+\dfrac{2}{\dfrac{\log x}{\log a}}+\dfrac{3}{2+\dfrac{\log x}{\log a}}=0...............\left( v \right)$

In equation (v) we will use the formula, $\dfrac{\log c}{\log d}={{\log }_{d}}c$ we get,

$\dfrac{1}{1+{{\log }_{a}}x}+\dfrac{2}{{{\log }_{a}}x}+\dfrac{3}{2+{{\log }_{a}}x}=0..............\left( vi \right)$

Now we will substitute ${{\log }_{a}}x=t$ , we will transform equation (vi) as

\[\dfrac{1}{1+t}+\dfrac{2}{t}+\dfrac{3}{2+t}=0............\left( vii \right)\]

Taking LCM in (vii) we get,

$\dfrac{t\left( 2+t \right)+2\left( 1+t \right)(2+t)+3t\left( t+1 \right)}{\left( 1+t \right)t\left( 2+t \right)}=0$

On cross multiplication we get,

t(2 + t) + 2(1 + t)(2+t) +3t (t + 1) = 0

On further simplification we get,

$\begin{align}

& 2t+{{t}^{2}}+2(2+t+2t+{{t}^{2}})+3{{t}^{2}}+3t=0 \\

& \Rightarrow 2t+{{t}^{2}}+4+2t+4t+2{{t}^{2}}+3{{t}^{2}}+3t=0 \\

\end{align}$

On simplification we get,

$6{{t}^{2}}+11t+4=0$

This is a quadratic equation. We will solve it by splitting the middle term, we get

$\begin{align}

& 6{{t}^{2}}+8t+3t+4=0 \\

& \Rightarrow 2t\left( 3t+4 \right)+1\left( 3t+4 \right)=0 \\

& \Rightarrow (3t+4)(2t+1)=0 \\

& \Rightarrow 3t+4=0,2t+1=0 \\

& \Rightarrow t=-\dfrac{4}{3},t=-\dfrac{1}{2} \\

\end{align}$

So, finally the value for $t=\dfrac{-4}{3},\dfrac{-1}{2}$.

We had assumed,

${{\log }_{a}}x=t$

Substituting the value of ‘t’, we get

${{\log }_{a}}x=\dfrac{-4}{3}$ and ${{\log }_{a}}x=-\dfrac{1}{2}$

Now we will use the transformation that is, ${{\log }_{b}}a=c\Rightarrow a={{b}^{c}}$. By using this in above equation, we get

$x={{a}^{-\dfrac{4}{3}}}$ and $x={{a}^{\dfrac{-1}{2}}}$ respectively.

Therefore, the correct answer is option (a) and (c).

Note: Students should be careful while calculating and finding values of ${{\log }_{a}}x$ also using transformation of changing ${{\log }_{a}}x=t$as $x={{a}^{t}}$.

Another way to solve the quadratic equation is using the formula, $t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.

Last updated date: 02nd Oct 2023

•

Total views: 362.1k

•

Views today: 9.62k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Why are resources distributed unequally over the e class 7 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE

What is the past tense of read class 10 english CBSE