# For x, a>0 the roots of the equation ${{\log }_{ax}}a+{{\log }_{x}}{{a}^{2}}+{{\log }_{{{a}^{2}}x}}{{a}^{3}}=0$ is (are) given by

(a) ${{a}^{-\dfrac{4}{3}}}$

(b) ${{a}^{-\dfrac{3}{4}}}$

(c) ${{a}^{-\dfrac{1}{2}}}$

(d) ${{a}^{-\dfrac{2}{3}}}$

Last updated date: 19th Mar 2023

•

Total views: 303.9k

•

Views today: 7.85k

Answer

Verified

303.9k+ views

Hint: First convert out given expression using the formula, ${{\log }_{a}}x=\dfrac{\log a}{\log x} ,\log (cd)=\log c+\log d,\log \left( {{d}^{n}} \right)=n\log d$. Then divide the whole expression by common term. Then transform the obtained expression using ${{\log }_{a}}x=t$, then find the value of ‘t’ and then transform it to get values of x in terms of a.

Complete step-by-step answer:

We are given that for x, a > 0 we have to find the roots of equation

${{\log }_{ax}}a+{{\log }_{x}}{{a}^{2}}+{{\log }_{{{a}^{2}}x}}{{a}^{3}}=0.............\left( i \right)$

Now to proceed the equation we have to use formula such as,

${{\log }_{c}}d=\dfrac{\log d}{\log c}$

By using this we can transform equation (i) as,

$\dfrac{\log a}{\log ax}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}x}=0............\left( ii \right)$

Now we will use the formula such as,

log(cd) = log c +log d

By using this we can write equation (ii) as,

$\dfrac{\log a}{\log a+\log x}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}+\log x}=0............\left( iii \right)$

Now we will use the formula such as,

$\log \left( {{d}^{n}} \right)=n\log d$

By using this we can write the equation (iii) as,

$\dfrac{\log a}{\log a+\log x}+\dfrac{2\log a}{\log x}+\dfrac{3\log a}{2\log a+\log x}=0............\left( iv \right)$

Now we will divide log a from both numerator and denominator of the term of equation (iv) we get,

$\dfrac{1}{1+\dfrac{\log x}{\log a}}+\dfrac{2}{\dfrac{\log x}{\log a}}+\dfrac{3}{2+\dfrac{\log x}{\log a}}=0...............\left( v \right)$

In equation (v) we will use the formula, $\dfrac{\log c}{\log d}={{\log }_{d}}c$ we get,

$\dfrac{1}{1+{{\log }_{a}}x}+\dfrac{2}{{{\log }_{a}}x}+\dfrac{3}{2+{{\log }_{a}}x}=0..............\left( vi \right)$

Now we will substitute ${{\log }_{a}}x=t$ , we will transform equation (vi) as

\[\dfrac{1}{1+t}+\dfrac{2}{t}+\dfrac{3}{2+t}=0............\left( vii \right)\]

Taking LCM in (vii) we get,

$\dfrac{t\left( 2+t \right)+2\left( 1+t \right)(2+t)+3t\left( t+1 \right)}{\left( 1+t \right)t\left( 2+t \right)}=0$

On cross multiplication we get,

t(2 + t) + 2(1 + t)(2+t) +3t (t + 1) = 0

On further simplification we get,

$\begin{align}

& 2t+{{t}^{2}}+2(2+t+2t+{{t}^{2}})+3{{t}^{2}}+3t=0 \\

& \Rightarrow 2t+{{t}^{2}}+4+2t+4t+2{{t}^{2}}+3{{t}^{2}}+3t=0 \\

\end{align}$

On simplification we get,

$6{{t}^{2}}+11t+4=0$

This is a quadratic equation. We will solve it by splitting the middle term, we get

$\begin{align}

& 6{{t}^{2}}+8t+3t+4=0 \\

& \Rightarrow 2t\left( 3t+4 \right)+1\left( 3t+4 \right)=0 \\

& \Rightarrow (3t+4)(2t+1)=0 \\

& \Rightarrow 3t+4=0,2t+1=0 \\

& \Rightarrow t=-\dfrac{4}{3},t=-\dfrac{1}{2} \\

\end{align}$

So, finally the value for $t=\dfrac{-4}{3},\dfrac{-1}{2}$.

We had assumed,

${{\log }_{a}}x=t$

Substituting the value of ‘t’, we get

${{\log }_{a}}x=\dfrac{-4}{3}$ and ${{\log }_{a}}x=-\dfrac{1}{2}$

Now we will use the transformation that is, ${{\log }_{b}}a=c\Rightarrow a={{b}^{c}}$. By using this in above equation, we get

$x={{a}^{-\dfrac{4}{3}}}$ and $x={{a}^{\dfrac{-1}{2}}}$ respectively.

Therefore, the correct answer is option (a) and (c).

Note: Students should be careful while calculating and finding values of ${{\log }_{a}}x$ also using transformation of changing ${{\log }_{a}}x=t$as $x={{a}^{t}}$.

Another way to solve the quadratic equation is using the formula, $t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.

Complete step-by-step answer:

We are given that for x, a > 0 we have to find the roots of equation

${{\log }_{ax}}a+{{\log }_{x}}{{a}^{2}}+{{\log }_{{{a}^{2}}x}}{{a}^{3}}=0.............\left( i \right)$

Now to proceed the equation we have to use formula such as,

${{\log }_{c}}d=\dfrac{\log d}{\log c}$

By using this we can transform equation (i) as,

$\dfrac{\log a}{\log ax}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}x}=0............\left( ii \right)$

Now we will use the formula such as,

log(cd) = log c +log d

By using this we can write equation (ii) as,

$\dfrac{\log a}{\log a+\log x}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}+\log x}=0............\left( iii \right)$

Now we will use the formula such as,

$\log \left( {{d}^{n}} \right)=n\log d$

By using this we can write the equation (iii) as,

$\dfrac{\log a}{\log a+\log x}+\dfrac{2\log a}{\log x}+\dfrac{3\log a}{2\log a+\log x}=0............\left( iv \right)$

Now we will divide log a from both numerator and denominator of the term of equation (iv) we get,

$\dfrac{1}{1+\dfrac{\log x}{\log a}}+\dfrac{2}{\dfrac{\log x}{\log a}}+\dfrac{3}{2+\dfrac{\log x}{\log a}}=0...............\left( v \right)$

In equation (v) we will use the formula, $\dfrac{\log c}{\log d}={{\log }_{d}}c$ we get,

$\dfrac{1}{1+{{\log }_{a}}x}+\dfrac{2}{{{\log }_{a}}x}+\dfrac{3}{2+{{\log }_{a}}x}=0..............\left( vi \right)$

Now we will substitute ${{\log }_{a}}x=t$ , we will transform equation (vi) as

\[\dfrac{1}{1+t}+\dfrac{2}{t}+\dfrac{3}{2+t}=0............\left( vii \right)\]

Taking LCM in (vii) we get,

$\dfrac{t\left( 2+t \right)+2\left( 1+t \right)(2+t)+3t\left( t+1 \right)}{\left( 1+t \right)t\left( 2+t \right)}=0$

On cross multiplication we get,

t(2 + t) + 2(1 + t)(2+t) +3t (t + 1) = 0

On further simplification we get,

$\begin{align}

& 2t+{{t}^{2}}+2(2+t+2t+{{t}^{2}})+3{{t}^{2}}+3t=0 \\

& \Rightarrow 2t+{{t}^{2}}+4+2t+4t+2{{t}^{2}}+3{{t}^{2}}+3t=0 \\

\end{align}$

On simplification we get,

$6{{t}^{2}}+11t+4=0$

This is a quadratic equation. We will solve it by splitting the middle term, we get

$\begin{align}

& 6{{t}^{2}}+8t+3t+4=0 \\

& \Rightarrow 2t\left( 3t+4 \right)+1\left( 3t+4 \right)=0 \\

& \Rightarrow (3t+4)(2t+1)=0 \\

& \Rightarrow 3t+4=0,2t+1=0 \\

& \Rightarrow t=-\dfrac{4}{3},t=-\dfrac{1}{2} \\

\end{align}$

So, finally the value for $t=\dfrac{-4}{3},\dfrac{-1}{2}$.

We had assumed,

${{\log }_{a}}x=t$

Substituting the value of ‘t’, we get

${{\log }_{a}}x=\dfrac{-4}{3}$ and ${{\log }_{a}}x=-\dfrac{1}{2}$

Now we will use the transformation that is, ${{\log }_{b}}a=c\Rightarrow a={{b}^{c}}$. By using this in above equation, we get

$x={{a}^{-\dfrac{4}{3}}}$ and $x={{a}^{\dfrac{-1}{2}}}$ respectively.

Therefore, the correct answer is option (a) and (c).

Note: Students should be careful while calculating and finding values of ${{\log }_{a}}x$ also using transformation of changing ${{\log }_{a}}x=t$as $x={{a}^{t}}$.

Another way to solve the quadratic equation is using the formula, $t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE