For x, a>0 the roots of the equation ${{\log }_{ax}}a+{{\log }_{x}}{{a}^{2}}+{{\log }_{{{a}^{2}}x}}{{a}^{3}}=0$ is (are) given by (a) ${{a}^{-\dfrac{4}{3}}}$ (b) ${{a}^{-\dfrac{3}{4}}}$ (c) ${{a}^{-\dfrac{1}{2}}}$ (d) ${{a}^{-\dfrac{2}{3}}}$
Answer
Verified
Hint: First convert out given expression using the formula, ${{\log }_{a}}x=\dfrac{\log a}{\log x} ,\log (cd)=\log c+\log d,\log \left( {{d}^{n}} \right)=n\log d$. Then divide the whole expression by common term. Then transform the obtained expression using ${{\log }_{a}}x=t$, then find the value of ‘t’ and then transform it to get values of x in terms of a.
Complete step-by-step answer: We are given that for x, a > 0 we have to find the roots of equation ${{\log }_{ax}}a+{{\log }_{x}}{{a}^{2}}+{{\log }_{{{a}^{2}}x}}{{a}^{3}}=0.............\left( i \right)$ Now to proceed the equation we have to use formula such as, ${{\log }_{c}}d=\dfrac{\log d}{\log c}$ By using this we can transform equation (i) as, $\dfrac{\log a}{\log ax}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}x}=0............\left( ii \right)$ Now we will use the formula such as, log(cd) = log c +log d By using this we can write equation (ii) as, $\dfrac{\log a}{\log a+\log x}+\dfrac{\log {{a}^{2}}}{\log x}+\dfrac{\log {{a}^{3}}}{\log {{a}^{2}}+\log x}=0............\left( iii \right)$ Now we will use the formula such as, $\log \left( {{d}^{n}} \right)=n\log d$ By using this we can write the equation (iii) as, $\dfrac{\log a}{\log a+\log x}+\dfrac{2\log a}{\log x}+\dfrac{3\log a}{2\log a+\log x}=0............\left( iv \right)$ Now we will divide log a from both numerator and denominator of the term of equation (iv) we get, $\dfrac{1}{1+\dfrac{\log x}{\log a}}+\dfrac{2}{\dfrac{\log x}{\log a}}+\dfrac{3}{2+\dfrac{\log x}{\log a}}=0...............\left( v \right)$ In equation (v) we will use the formula, $\dfrac{\log c}{\log d}={{\log }_{d}}c$ we get, $\dfrac{1}{1+{{\log }_{a}}x}+\dfrac{2}{{{\log }_{a}}x}+\dfrac{3}{2+{{\log }_{a}}x}=0..............\left( vi \right)$ Now we will substitute ${{\log }_{a}}x=t$ , we will transform equation (vi) as \[\dfrac{1}{1+t}+\dfrac{2}{t}+\dfrac{3}{2+t}=0............\left( vii \right)\] Taking LCM in (vii) we get, $\dfrac{t\left( 2+t \right)+2\left( 1+t \right)(2+t)+3t\left( t+1 \right)}{\left( 1+t \right)t\left( 2+t \right)}=0$ On cross multiplication we get, t(2 + t) + 2(1 + t)(2+t) +3t (t + 1) = 0 On further simplification we get, $\begin{align} & 2t+{{t}^{2}}+2(2+t+2t+{{t}^{2}})+3{{t}^{2}}+3t=0 \\ & \Rightarrow 2t+{{t}^{2}}+4+2t+4t+2{{t}^{2}}+3{{t}^{2}}+3t=0 \\ \end{align}$ On simplification we get, $6{{t}^{2}}+11t+4=0$ This is a quadratic equation. We will solve it by splitting the middle term, we get $\begin{align} & 6{{t}^{2}}+8t+3t+4=0 \\ & \Rightarrow 2t\left( 3t+4 \right)+1\left( 3t+4 \right)=0 \\ & \Rightarrow (3t+4)(2t+1)=0 \\ & \Rightarrow 3t+4=0,2t+1=0 \\ & \Rightarrow t=-\dfrac{4}{3},t=-\dfrac{1}{2} \\ \end{align}$ So, finally the value for $t=\dfrac{-4}{3},\dfrac{-1}{2}$. We had assumed, ${{\log }_{a}}x=t$ Substituting the value of ‘t’, we get ${{\log }_{a}}x=\dfrac{-4}{3}$ and ${{\log }_{a}}x=-\dfrac{1}{2}$ Now we will use the transformation that is, ${{\log }_{b}}a=c\Rightarrow a={{b}^{c}}$. By using this in above equation, we get $x={{a}^{-\dfrac{4}{3}}}$ and $x={{a}^{\dfrac{-1}{2}}}$ respectively. Therefore, the correct answer is option (a) and (c).
Note: Students should be careful while calculating and finding values of ${{\log }_{a}}x$ also using transformation of changing ${{\log }_{a}}x=t$as $x={{a}^{t}}$. Another way to solve the quadratic equation is using the formula, $t=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
×
Sorry!, This page is not available for now to bookmark.