Answer
Verified
445.5k+ views
Hint: Calculation of the radius of an atom is the application of Bohr’s model, which is applicable for hydrogen and hydrogen like single electron containing species such as \[\text{L}{{\text{i}}^{2+}}\], \[\text{B}{{\text{e}}^{3+}}\] ion.
Complete Step by step solution:
Radius or orbital (shell) of a single electron containing species is calculated by
\[r\,=\,\dfrac{{{n}^{2}}{{h}^{2}}}{4{{\pi }^{2}}m{{e}^{2}}}\times \dfrac{1}{Z}\]
In it\[h\],\[\pi \] \[m\]and \[e\] are constant, so after substituting the value we get
\[\text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}\,......(1)\]
Where $\text{n}$ = no of orbit, and Z = atomic number
For hydrogen atom, the value of radius after putting n = 1 and Z = 1 in the equation (1)
\[\begin{align}
& \text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}......\left( 1 \right) \\
& \text{r}\,\,=\,0.529\times \,\dfrac{{{1}^{\text{2}}}}{1}{{\text{A}}^{\text{o}}} \\
& \text{r}\,\,=\,\,0.529\,{{\text{A}}^{\text{o}}} \\
\end{align}\]
(A) $H{{e}^{+}}$Ion has only one electron but it has two protons in the nucleus, hence its electron feels three times more attraction from the nucleus in comparison to the hydrogen atom. Thus the radius of the ion for $\text{n}=\,2$ will be
After putting these value $\text{n}=\,2$ and \[\text{Z}\,\text{= 2}\] in equation (1)
\[\begin{align}
& \text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}......\left( 1 \right) \\
& \text{r}\,\,=\,0.529\times \,\dfrac{{{2}^{\text{2}}}}{2}{{\text{A}}^{\text{o}}} \\
& \text{r}\,\,=\,\,2\,\times 0.529\,{{\text{A}}^{\text{o}}} \\
\end{align}\]
\[\text{r}\,=\,1.05\,{{A}^{\circ }}\]
(B) \[L{{i}^{2+}}\]Ion has only one electron but it has three protons in the nucleus. So radius of\[\text{L}{{\text{i}}^{2+}}\]ion \[n\,=\,2\]and\[\text{Z}\,\text{= 3}\]after putting these values in the equation (1) we get
\[\begin{align}
& \text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}......\left( 1 \right) \\
& \text{r}\,\,=\,0.529\times \,\dfrac{{{2}^{\text{2}}}}{3}{{\text{A}}^{\text{o}}} \\
& r\,\,=\,\,0.529\times \,\dfrac{4}{3}{{\text{A}}^{\text{o}}}\,\, \\
\end{align}\]
\[\text{r}\,\,=\,\,0.235\,{{\text{A}}^{\text{o}}}\,\,\]
(C) \[\text{B}{{\text{e}}^{3+}}\]Ion has only one electron but it has four protons in the nucleus. So radius of \[\text{B}{{\text{e}}^{3+}}\]for its second orbital \[n\,=\,2\]and\[\text{Z}\,\text{= 4}\] after putting these values on equation (1) we get
\[\begin{align}
& \text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}......\left( 1 \right) \\
& \text{r}\,\,=\,0.529\times \,\dfrac{{{2}^{\text{2}}}}{4}{{\text{A}}^{\text{o}}} \\
& \text{r}\,\,=\,\,0.529\,{{\text{A}}^{\text{o}}} \\
\end{align}\]
So the option (C) will be the correct option.
Note: radius of an atomic shell is directly proportional to the nth number of shell and inversely proportional to the atomic number or number of protons in the atom. So for a single electron species the size of the first shell will be the smallest and size of last shall be highest.
Complete Step by step solution:
Radius or orbital (shell) of a single electron containing species is calculated by
\[r\,=\,\dfrac{{{n}^{2}}{{h}^{2}}}{4{{\pi }^{2}}m{{e}^{2}}}\times \dfrac{1}{Z}\]
In it\[h\],\[\pi \] \[m\]and \[e\] are constant, so after substituting the value we get
\[\text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}\,......(1)\]
Where $\text{n}$ = no of orbit, and Z = atomic number
For hydrogen atom, the value of radius after putting n = 1 and Z = 1 in the equation (1)
\[\begin{align}
& \text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}......\left( 1 \right) \\
& \text{r}\,\,=\,0.529\times \,\dfrac{{{1}^{\text{2}}}}{1}{{\text{A}}^{\text{o}}} \\
& \text{r}\,\,=\,\,0.529\,{{\text{A}}^{\text{o}}} \\
\end{align}\]
(A) $H{{e}^{+}}$Ion has only one electron but it has two protons in the nucleus, hence its electron feels three times more attraction from the nucleus in comparison to the hydrogen atom. Thus the radius of the ion for $\text{n}=\,2$ will be
After putting these value $\text{n}=\,2$ and \[\text{Z}\,\text{= 2}\] in equation (1)
\[\begin{align}
& \text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}......\left( 1 \right) \\
& \text{r}\,\,=\,0.529\times \,\dfrac{{{2}^{\text{2}}}}{2}{{\text{A}}^{\text{o}}} \\
& \text{r}\,\,=\,\,2\,\times 0.529\,{{\text{A}}^{\text{o}}} \\
\end{align}\]
\[\text{r}\,=\,1.05\,{{A}^{\circ }}\]
(B) \[L{{i}^{2+}}\]Ion has only one electron but it has three protons in the nucleus. So radius of\[\text{L}{{\text{i}}^{2+}}\]ion \[n\,=\,2\]and\[\text{Z}\,\text{= 3}\]after putting these values in the equation (1) we get
\[\begin{align}
& \text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}......\left( 1 \right) \\
& \text{r}\,\,=\,0.529\times \,\dfrac{{{2}^{\text{2}}}}{3}{{\text{A}}^{\text{o}}} \\
& r\,\,=\,\,0.529\times \,\dfrac{4}{3}{{\text{A}}^{\text{o}}}\,\, \\
\end{align}\]
\[\text{r}\,\,=\,\,0.235\,{{\text{A}}^{\text{o}}}\,\,\]
(C) \[\text{B}{{\text{e}}^{3+}}\]Ion has only one electron but it has four protons in the nucleus. So radius of \[\text{B}{{\text{e}}^{3+}}\]for its second orbital \[n\,=\,2\]and\[\text{Z}\,\text{= 4}\] after putting these values on equation (1) we get
\[\begin{align}
& \text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}......\left( 1 \right) \\
& \text{r}\,\,=\,0.529\times \,\dfrac{{{2}^{\text{2}}}}{4}{{\text{A}}^{\text{o}}} \\
& \text{r}\,\,=\,\,0.529\,{{\text{A}}^{\text{o}}} \\
\end{align}\]
So the option (C) will be the correct option.
Note: radius of an atomic shell is directly proportional to the nth number of shell and inversely proportional to the atomic number or number of protons in the atom. So for a single electron species the size of the first shell will be the smallest and size of last shall be highest.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE