
For which of the following changes $ \Delta H \ne \Delta E\,\,? $
(A) $ {H_2}(g)\, + \,{I_2}(g)\, \to \,2HI(g) $
(B) $ HCl(aq)\, + \,NaOH(aq)\, \to \,NaCl(aq) + {H_2}O(l) $
(C) $ C(s)\, + \,{O_2}(g)\, \to \,C{O_2}(g) $
(D) $ {N_2}(g)\, + \,3{H_2}(g)\, \to \,2N{H_3}(g) $
Answer
512.7k+ views
Hint :Thermodynamics is the study of heat, work and temperature and their relation with energy and other physical properties of matter. Enthalpy (H) is a state function that measures energy of a system. Enthalpy is the sum of internal energy (E) and product of pressure and volume. Internal energy (E) is the total energy of the system- sum of kinetic and potential energy.
Complete Step By Step Answer:
The first law of thermodynamics adopts the law of conservation of energy and can be formulated as:
$ \Delta H = \Delta E + P\Delta V $
where, $ \Delta H $ is the change in enthalpy, $ \Delta E $ is the change in internal energy, $ P $ is the pressure and $ \Delta V $ is the change in volume.
From ideal gas equation, $ PV = nRT $ , the above equation can be rewritten as:
$ \Delta H = \Delta E + \Delta {n_g}RT $
$ \Delta {n_g} $ $ = $ change in number of moles in gaseous form $ = $ $ {n_p} - {n_r} $
R $ = $ universal gas constant
T $ = $ Temperature in Kelvin
$ \Delta H \ne \Delta E\,\, $ when $ \Delta {n_g}\, \ne \,0 $
Now, let us examine the given reactions :
(A) $ {H_2}(g)\, + \,{I_2}(g)\, \to \,2HI(g) $
Here, $ \Delta {n_g}\, = $ $ 2 - 2\, = \,0 $
Therefore, $ \Delta H\, = \,\Delta E $ .
(B) $ HCl(aq)\, + \,NaOH(aq)\, \to \,NaCl(aq) + {H_2}O(l) $
This is an acid base neutralisation reaction. There are neither gaseous products or reactants. $ \Delta H\, = \,\Delta E $ .
(C) $ C(s)\, + \,{O_2}(g)\, \to \,C{O_2}(g) $
$ \Delta {n_g}\, = \,1 - 1 = 0 $
Therefore, $ \Delta H\, = \,\Delta E $ .
(D) $ {N_2}(g)\, + \,3{H_2}(g)\, \to \,2N{H_3}(g) $
Here, $ \Delta {n_g}\, = \,2 - 4 = - 2 $
The equation becomes $ \Delta H = \Delta E - 2RT $ .
$ \Delta H \ne \Delta E $ in the above chemical reaction.
The correct option is (D) $ {N_2}(g)\, + \,3{H_2}(g)\, \to \,2N{H_3}(g) $ .
Note :
The thermodynamic state of a system is a function of temperature, pressure, and quantity of a substance. State functions depend only on these parameters and do not depend on the path taken. Enthalpy and internal energy are state functions. Certain functions like heat and work depend on the path followed. They are called path functions.
Complete Step By Step Answer:
The first law of thermodynamics adopts the law of conservation of energy and can be formulated as:
$ \Delta H = \Delta E + P\Delta V $
where, $ \Delta H $ is the change in enthalpy, $ \Delta E $ is the change in internal energy, $ P $ is the pressure and $ \Delta V $ is the change in volume.
From ideal gas equation, $ PV = nRT $ , the above equation can be rewritten as:
$ \Delta H = \Delta E + \Delta {n_g}RT $
$ \Delta {n_g} $ $ = $ change in number of moles in gaseous form $ = $ $ {n_p} - {n_r} $
R $ = $ universal gas constant
T $ = $ Temperature in Kelvin
$ \Delta H \ne \Delta E\,\, $ when $ \Delta {n_g}\, \ne \,0 $
Now, let us examine the given reactions :
(A) $ {H_2}(g)\, + \,{I_2}(g)\, \to \,2HI(g) $
Here, $ \Delta {n_g}\, = $ $ 2 - 2\, = \,0 $
Therefore, $ \Delta H\, = \,\Delta E $ .
(B) $ HCl(aq)\, + \,NaOH(aq)\, \to \,NaCl(aq) + {H_2}O(l) $
This is an acid base neutralisation reaction. There are neither gaseous products or reactants. $ \Delta H\, = \,\Delta E $ .
(C) $ C(s)\, + \,{O_2}(g)\, \to \,C{O_2}(g) $
$ \Delta {n_g}\, = \,1 - 1 = 0 $
Therefore, $ \Delta H\, = \,\Delta E $ .
(D) $ {N_2}(g)\, + \,3{H_2}(g)\, \to \,2N{H_3}(g) $
Here, $ \Delta {n_g}\, = \,2 - 4 = - 2 $
The equation becomes $ \Delta H = \Delta E - 2RT $ .
$ \Delta H \ne \Delta E $ in the above chemical reaction.
The correct option is (D) $ {N_2}(g)\, + \,3{H_2}(g)\, \to \,2N{H_3}(g) $ .
Note :
The thermodynamic state of a system is a function of temperature, pressure, and quantity of a substance. State functions depend only on these parameters and do not depend on the path taken. Enthalpy and internal energy are state functions. Certain functions like heat and work depend on the path followed. They are called path functions.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

