
For what value of k, the matrix \[\left( \begin{matrix}
2-k & 4 \\
-5 & 1 \\
\end{matrix} \right)\] is not invertible?
Answer
619.5k+ views
Hint:Find the determinant of the matrix. As it’s not invertible it is equal to zero. Consider the matrix A. Find the determinant of A and equal it to zero. From that, find the value of k.
Complete step-by-step answer:
A square matrix is said to be invertible if its inverse exists and is said to be non-invertible if its determinant is equal to zero.
\[\therefore \]A square matrix that is not invertible is called singular/ degenerate. Non-square matrices \[\left( m\times n \right)\] where \[m\ne n\] do not have an inverse. In some cases there are left inverse and right inverse.
Given the matrix \[\left( \begin{matrix}
2-k & 4 \\
-5 & 1 \\
\end{matrix} \right)\]
Let’s write it as \[A=\left( \begin{matrix}
2-k & 4 \\
-5 & 1 \\
\end{matrix} \right)\]
As the matrix is non-invertible, the determinant of A is zero.
\[\left| A \right|=0\]
\[\left| \left( \begin{matrix}
2-k & 3 \\
-5 & 1 \\
\end{matrix} \right) \right|=0\]
To work out the determinant, multiply A by the determinant of the matrix that is not in a row or column and then sum up.
\[\begin{align}
& \left[ \left( 2-k \right)\left( 1 \right) \right]-\left[ \left( 3 \right)\left( -5 \right) \right] \\
& =\left( 2-k \right)-\left( -15 \right) \\
& =2-k+15=0 \\
& \therefore k=17 \\
\end{align}\]
\[\therefore \]Value of k = 17.
Note:
For the case of a non-invertible matrix, we took\[\left| A \right|=0\].
If the matrix was invertible, then \[\left| A \right|\ne 0\]but\[{{A}^{-1}}\].
Complete step-by-step answer:
A square matrix is said to be invertible if its inverse exists and is said to be non-invertible if its determinant is equal to zero.
\[\therefore \]A square matrix that is not invertible is called singular/ degenerate. Non-square matrices \[\left( m\times n \right)\] where \[m\ne n\] do not have an inverse. In some cases there are left inverse and right inverse.
Given the matrix \[\left( \begin{matrix}
2-k & 4 \\
-5 & 1 \\
\end{matrix} \right)\]
Let’s write it as \[A=\left( \begin{matrix}
2-k & 4 \\
-5 & 1 \\
\end{matrix} \right)\]
As the matrix is non-invertible, the determinant of A is zero.
\[\left| A \right|=0\]
\[\left| \left( \begin{matrix}
2-k & 3 \\
-5 & 1 \\
\end{matrix} \right) \right|=0\]
To work out the determinant, multiply A by the determinant of the matrix that is not in a row or column and then sum up.
\[\begin{align}
& \left[ \left( 2-k \right)\left( 1 \right) \right]-\left[ \left( 3 \right)\left( -5 \right) \right] \\
& =\left( 2-k \right)-\left( -15 \right) \\
& =2-k+15=0 \\
& \therefore k=17 \\
\end{align}\]
\[\therefore \]Value of k = 17.
Note:
For the case of a non-invertible matrix, we took\[\left| A \right|=0\].
If the matrix was invertible, then \[\left| A \right|\ne 0\]but\[{{A}^{-1}}\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

