
For the universal set$\{ $$4,5,6,7,8,9,10,11,12,13$$\} $, find its subsets $A,B,C$and $D$
$A$) $\{ $even numbers$\} $
$B$) $\{ $odd numbers greater than $8$$\} $
$C$) Prime numbers
$D$) even numbers less than $10$
Answer
504.6k+ views
Hint: First we have to define what the terms we need to solve the problem are.
A number which is divisible by \[2\]and generates a remainder of \[0\]is called an even number.
Odd numbers are whole numbers that cannot be divided exactly into pairs. Odd numbers, when divided by\[2\], leave a remainder of \[1,3,5,7,9,11,13,15{\text{ }} \ldots \]are sequential odd numbers. Odd numbers have the digits \[1,3,5,7or9\] in their one’s place.
Prime numbers are whole numbers greater than\[1\] , that have only two factors \[1\]and the number itself. Prime numbers are divisible only by the number \[1\]or itself.
Complete step by step answer:
Since we know the definition of even number, odd number and prime number we further approach to find option $A$ which is the set of all even numbers in the given set.
Thus $\{ 4,6,8,10,12\} $are the numbers which are divisible by \[2\]and generates a remainder zero
Hence $A$=$\{ 4,6,8,10,12\} $
Now for option $B$which is the set of all odd numbers also greater than $8$
Thus, odd numbers also greater that $8$ as seen $\{ 9,11,13\} $are the numbers which are cannot divided exactly two pairs and leaves a remainder \[1,3,5, \ldots \]
Hence $B$= $\{ 9,11,13\} $
Now for option $C$ which is a set of all prime number to find from universal set
Since Prime numbers are greater than \[1\], that have only two factors \[1\]and the number itself which are $C$= $\{ 5,7,11,13\} $
And finally, $D$ is the even numbers also less that $10$
which are $D$= $\{ 4,6,8\} $even numbers also less that $10$
Hence $A$=$\{ 4,6,8,10,12\} $, $B$=$\{ 9,11,13\} $, $C$= $\{ 5,7,11,13\} $and $D$= $\{ 4,6,8\} $
Note: We find even numbers, odd numbers, prime numbers all in the universal set only
And $A,B,C$and $D$ are the subsets of the given universal set. Also, the universal set does not contain any repeated elements.
A number which is divisible by \[2\]and generates a remainder of \[0\]is called an even number.
Odd numbers are whole numbers that cannot be divided exactly into pairs. Odd numbers, when divided by\[2\], leave a remainder of \[1,3,5,7,9,11,13,15{\text{ }} \ldots \]are sequential odd numbers. Odd numbers have the digits \[1,3,5,7or9\] in their one’s place.
Prime numbers are whole numbers greater than\[1\] , that have only two factors \[1\]and the number itself. Prime numbers are divisible only by the number \[1\]or itself.
Complete step by step answer:
Since we know the definition of even number, odd number and prime number we further approach to find option $A$ which is the set of all even numbers in the given set.
Thus $\{ 4,6,8,10,12\} $are the numbers which are divisible by \[2\]and generates a remainder zero
Hence $A$=$\{ 4,6,8,10,12\} $
Now for option $B$which is the set of all odd numbers also greater than $8$
Thus, odd numbers also greater that $8$ as seen $\{ 9,11,13\} $are the numbers which are cannot divided exactly two pairs and leaves a remainder \[1,3,5, \ldots \]
Hence $B$= $\{ 9,11,13\} $
Now for option $C$ which is a set of all prime number to find from universal set
Since Prime numbers are greater than \[1\], that have only two factors \[1\]and the number itself which are $C$= $\{ 5,7,11,13\} $
And finally, $D$ is the even numbers also less that $10$
which are $D$= $\{ 4,6,8\} $even numbers also less that $10$
Hence $A$=$\{ 4,6,8,10,12\} $, $B$=$\{ 9,11,13\} $, $C$= $\{ 5,7,11,13\} $and $D$= $\{ 4,6,8\} $
Note: We find even numbers, odd numbers, prime numbers all in the universal set only
And $A,B,C$and $D$ are the subsets of the given universal set. Also, the universal set does not contain any repeated elements.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

