Answer

Verified

485.1k+ views

Hint: Use the basic definition of fractional part function with respect to greatest integer i.e. {x} = x – [x].

Here, we have the limit given as \[\underset{x\to 8}{\mathop{\lim }}\,\dfrac{\sin \left\{ x-10 \right\}}{\left\{ 10-x \right\}}\] where { } is denoting fractional function.

Let us suppose the given limit is ‘L’.

Hence, we have

\[L=\underset{x\to 8}{\mathop{\lim }}\,\dfrac{\sin \left\{ x-10 \right\}}{\left\{ 10-x \right\}}....\left( i \right)\]

Now, we have to find the limit of the given expression. Hence we need to find the LHL (Left-hand limit) and RHL (Right-hand limit) of the given expression.

Therefore, for LHL, we have to put \[x\to {{8}^{-}}\]. Hence we get

\[L=\underset{x\to {{8}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left\{ x-10 \right\}}{\left\{ 10-x \right\}}\]

Now, replacing ‘x’ by ( 8 – h) where \[h\to 0\], we get

\[L=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left\{ 8-h-10 \right\}}{\left\{ 10-\left( 8-h \right) \right\}}\]

\[L=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left\{ -2-h \right\}}{\left\{ 2+h \right\}}....\left( ii \right)\]

As we know that {x} will lie on [0, 1) and is defined as {x} = x – [x] where [ ] denotes the greatest integer.

Hence, we can put x = 2 + h, we get,

{2 + h} = 2 + h – [2 + h]

As \[h\to 0\], hence [2 + h] will open as ‘2’. As (2 + h) will lie between [2, 3) and the greatest integer of that will be 2. Hence we get

\[\left\{ 2+h \right\}=2+h-2=h....\left( iii \right)\]

Now putting x = – 2 – h in {x} = x – [x], we get

\[\left\{ -2-h \right\}=-2-h-\left[ -2-h \right]\]

As, (-2, -h) will lie on [-3, -2) and hence greatest integer of – 2 – h will be – 3. Hence, we get

\[\left\{ -2-h \right\}=-2-h+3=1-h....\left( iv \right)\]

Hence, equation (ii) will be written as \[L=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( 1-h \right)}{h}=\dfrac{\sin 1}{0}\] which is not defined and tending to \[\infty \]. Now, coming to the RHL part, i.e. we need to put \[x\to {{8}^{+}}\] or replacing x by (h + 8), where \[h\to 0\]. Hence, we get

\[L=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left\{ 8+h-10 \right\}}{\left\{ 10-8-h \right\}}\]

\[L=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left\{ -2+h \right\}}{\left\{ 2-h \right\}}....\left( v \right)\]

Now, by relation {x} = x – [x], we get {-2 + h} = – 2 + h – [–2 + h]

Since (–2 + h) will lie in (–2, –1) and hence the greatest integer of (–2 + h) is –2. Therefore,

\[\left\{ -2+h \right\}=-2+h+2=h....\left( vi \right)\]

Now, for {2 – h}, we get

\[\left\{ 2-h \right\}=2-h-\left[ 2-h \right]\]

As (2 – h) will lie in (1, 2) and hence the greatest integer will be 1.

Hence, we get

\[\left\{ 2-h \right\}=2-h-1=1-h....\left( vii \right)\]

Now, putting values of {–2 + h} and {2 – h} from equations (vi) and (vii) in equation (v), we get

\[L=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \text{ }h}{1-h}=0\]

Hence, the value of RHL is definite and equal to 0.

Therefore, RHL exists and LHL does not exist for the given limit.

Hence, option (b) is the correct answer.

Note: One can directly put x = 8 to the given relation and get \[\dfrac{\sin \left\{ -2 \right\}}{\left\{ 2 \right\}}\] where {- 2} and {2} will be zero. And hence we get an indeterminate form of limit i.e. \[\dfrac{0}{0}\]. And one can compare this relation by \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1\], and give an answer that limit will exist and equal to ‘1’ which is the wrong approach for these kinds of questions.

Hence, we cannot put direct limits to functions like {x}, [x], |x| or log |x| etc. Therefore, always try to calculate LHL and RHL, both for these kinds of questions.

Here, we have the limit given as \[\underset{x\to 8}{\mathop{\lim }}\,\dfrac{\sin \left\{ x-10 \right\}}{\left\{ 10-x \right\}}\] where { } is denoting fractional function.

Let us suppose the given limit is ‘L’.

Hence, we have

\[L=\underset{x\to 8}{\mathop{\lim }}\,\dfrac{\sin \left\{ x-10 \right\}}{\left\{ 10-x \right\}}....\left( i \right)\]

Now, we have to find the limit of the given expression. Hence we need to find the LHL (Left-hand limit) and RHL (Right-hand limit) of the given expression.

Therefore, for LHL, we have to put \[x\to {{8}^{-}}\]. Hence we get

\[L=\underset{x\to {{8}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left\{ x-10 \right\}}{\left\{ 10-x \right\}}\]

Now, replacing ‘x’ by ( 8 – h) where \[h\to 0\], we get

\[L=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left\{ 8-h-10 \right\}}{\left\{ 10-\left( 8-h \right) \right\}}\]

\[L=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left\{ -2-h \right\}}{\left\{ 2+h \right\}}....\left( ii \right)\]

As we know that {x} will lie on [0, 1) and is defined as {x} = x – [x] where [ ] denotes the greatest integer.

Hence, we can put x = 2 + h, we get,

{2 + h} = 2 + h – [2 + h]

As \[h\to 0\], hence [2 + h] will open as ‘2’. As (2 + h) will lie between [2, 3) and the greatest integer of that will be 2. Hence we get

\[\left\{ 2+h \right\}=2+h-2=h....\left( iii \right)\]

Now putting x = – 2 – h in {x} = x – [x], we get

\[\left\{ -2-h \right\}=-2-h-\left[ -2-h \right]\]

As, (-2, -h) will lie on [-3, -2) and hence greatest integer of – 2 – h will be – 3. Hence, we get

\[\left\{ -2-h \right\}=-2-h+3=1-h....\left( iv \right)\]

Hence, equation (ii) will be written as \[L=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( 1-h \right)}{h}=\dfrac{\sin 1}{0}\] which is not defined and tending to \[\infty \]. Now, coming to the RHL part, i.e. we need to put \[x\to {{8}^{+}}\] or replacing x by (h + 8), where \[h\to 0\]. Hence, we get

\[L=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left\{ 8+h-10 \right\}}{\left\{ 10-8-h \right\}}\]

\[L=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left\{ -2+h \right\}}{\left\{ 2-h \right\}}....\left( v \right)\]

Now, by relation {x} = x – [x], we get {-2 + h} = – 2 + h – [–2 + h]

Since (–2 + h) will lie in (–2, –1) and hence the greatest integer of (–2 + h) is –2. Therefore,

\[\left\{ -2+h \right\}=-2+h+2=h....\left( vi \right)\]

Now, for {2 – h}, we get

\[\left\{ 2-h \right\}=2-h-\left[ 2-h \right]\]

As (2 – h) will lie in (1, 2) and hence the greatest integer will be 1.

Hence, we get

\[\left\{ 2-h \right\}=2-h-1=1-h....\left( vii \right)\]

Now, putting values of {–2 + h} and {2 – h} from equations (vi) and (vii) in equation (v), we get

\[L=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \text{ }h}{1-h}=0\]

Hence, the value of RHL is definite and equal to 0.

Therefore, RHL exists and LHL does not exist for the given limit.

Hence, option (b) is the correct answer.

Note: One can directly put x = 8 to the given relation and get \[\dfrac{\sin \left\{ -2 \right\}}{\left\{ 2 \right\}}\] where {- 2} and {2} will be zero. And hence we get an indeterminate form of limit i.e. \[\dfrac{0}{0}\]. And one can compare this relation by \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1\], and give an answer that limit will exist and equal to ‘1’ which is the wrong approach for these kinds of questions.

Hence, we cannot put direct limits to functions like {x}, [x], |x| or log |x| etc. Therefore, always try to calculate LHL and RHL, both for these kinds of questions.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

A rainbow has circular shape because A The earth is class 11 physics CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell