For the chemical reaction $X\rightleftharpoons Y$, the standard reaction Gibbs energy depends on temperature \[T({\rm{in K}})\] as: \[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]. The major component of the reaction mixture at \[T\] is:
(This question has multiple correct options)
A. \[X\,{\rm{if}}\,T = 315\,K\]
B. \[Y\,{\rm{if}}\,T = 350K\]
C. \[Y\,{\rm{if}}\,T = 300K\]
D. \[Y\,{\rm{if}}\,T = 280\,K\]
Answer
278.7k+ views
Hint: Gibbs free energy: It is a thermodynamic potential which is used to determine the maximum work done by the system at constant pressure and temperature. It is also used to determine the spontaneity of the reaction i.e.; it determines the extent of formation of product during the chemical reaction.
Complete answer:
For a reaction at equilibrium, the rate of forward reaction is equivalent to the rate of backward reaction. So, if the change in Gibbs free energy for forward reaction is \[G\]. Then the change in Gibbs free energy for backward reaction will be \[ - G\]. Therefore, total change in Gibbs free energy for overall reaction will be as follows:
\[{\Delta _r}{G^ \circ }_{eq.} = G + ( - G)\]
\[\therefore {\Delta _r}{G^ \circ }_{eq.} = 0\]
Hence, the change in Gibbs free energy at equilibrium is zero.
According to the given conditions, change in Gibbs free energy depends on temperature as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
At equilibrium,
\[120 - \dfrac{3}{8}T = 0\]
\[ \Rightarrow 3T = 960\]
\[ \Rightarrow T = 320\,K\]
Now, as per options given:
If \[T = 315K\], then the change in Gibbs free energy is as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
\[ \Rightarrow \,120 - \dfrac{3}{8} \times 315\]
\[ \Rightarrow 120 - 118.13\]
\[ \Rightarrow 1.87\,kJmo{l^{ - 1}}\]
As the change in Gibbs free energy is positive which indicates that the reaction is nonspontaneous. Therefore, the major component of the reaction will be \[X\] at temperature \[T = 315K\].
If \[T = 350K\], then the change in Gibbs free energy is as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
\[ \Rightarrow \,120 - \dfrac{3}{8} \times 350\]
\[ \Rightarrow 120 - 131.25\]
\[ \Rightarrow - 11.25\,kJmo{l^{ - 1}}\]
As the change in Gibbs free energy is negative which indicates that the reaction is spontaneous. Therefore, the major component of the reaction will be \[Y\] at temperature \[T = 350K\].
If \[T = 300K\], then the change in Gibbs free energy is as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
\[ \Rightarrow \,120 - \dfrac{3}{8} \times 300\]
\[ \Rightarrow 120 - 112.5\]
\[ \Rightarrow 7.5\,kJmo{l^{ - 1}}\]
As the change in Gibbs free energy is positive which indicates that the reaction is nonspontaneous. Therefore, the major component of the reaction will be \[X\] at temperature \[T = 300K\].
If \[T = 280K\], then the change in Gibbs free energy is as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
\[ \Rightarrow \,120 - \dfrac{3}{8} \times 280\]
\[ \Rightarrow 120 - 105\]
\[ \Rightarrow 15\,kJmo{l^{ - 1}}\]
As the change in Gibbs free energy is positive which indicates that the reaction is nonspontaneous. Therefore, the major component of the reaction will be \[X\] at temperature \[T = 280K\].
Hence, options (a) and (b) are correct.
Note:
Spontaneous reaction: It is a chemical reaction which favours the formation of products at a particular temperature. Change in Gibbs free energy i.e., \[\Delta G < 0\] is the mandatory condition for a reaction to be spontaneous.
Non-spontaneous reaction: It is a chemical reaction which does not favour the formation of products for specific conditions. Hence, for these reactions the reactants are the major components.
Complete answer:
For a reaction at equilibrium, the rate of forward reaction is equivalent to the rate of backward reaction. So, if the change in Gibbs free energy for forward reaction is \[G\]. Then the change in Gibbs free energy for backward reaction will be \[ - G\]. Therefore, total change in Gibbs free energy for overall reaction will be as follows:
\[{\Delta _r}{G^ \circ }_{eq.} = G + ( - G)\]
\[\therefore {\Delta _r}{G^ \circ }_{eq.} = 0\]
Hence, the change in Gibbs free energy at equilibrium is zero.
According to the given conditions, change in Gibbs free energy depends on temperature as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
At equilibrium,
\[120 - \dfrac{3}{8}T = 0\]
\[ \Rightarrow 3T = 960\]
\[ \Rightarrow T = 320\,K\]
Now, as per options given:
If \[T = 315K\], then the change in Gibbs free energy is as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
\[ \Rightarrow \,120 - \dfrac{3}{8} \times 315\]
\[ \Rightarrow 120 - 118.13\]
\[ \Rightarrow 1.87\,kJmo{l^{ - 1}}\]
As the change in Gibbs free energy is positive which indicates that the reaction is nonspontaneous. Therefore, the major component of the reaction will be \[X\] at temperature \[T = 315K\].
If \[T = 350K\], then the change in Gibbs free energy is as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
\[ \Rightarrow \,120 - \dfrac{3}{8} \times 350\]
\[ \Rightarrow 120 - 131.25\]
\[ \Rightarrow - 11.25\,kJmo{l^{ - 1}}\]
As the change in Gibbs free energy is negative which indicates that the reaction is spontaneous. Therefore, the major component of the reaction will be \[Y\] at temperature \[T = 350K\].
If \[T = 300K\], then the change in Gibbs free energy is as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
\[ \Rightarrow \,120 - \dfrac{3}{8} \times 300\]
\[ \Rightarrow 120 - 112.5\]
\[ \Rightarrow 7.5\,kJmo{l^{ - 1}}\]
As the change in Gibbs free energy is positive which indicates that the reaction is nonspontaneous. Therefore, the major component of the reaction will be \[X\] at temperature \[T = 300K\].
If \[T = 280K\], then the change in Gibbs free energy is as follows:
\[{\Delta _r}{G^ \circ }(in\,kJmo{l^{ - 1}}) = 120 - \dfrac{3}{8}T\]
\[ \Rightarrow \,120 - \dfrac{3}{8} \times 280\]
\[ \Rightarrow 120 - 105\]
\[ \Rightarrow 15\,kJmo{l^{ - 1}}\]
As the change in Gibbs free energy is positive which indicates that the reaction is nonspontaneous. Therefore, the major component of the reaction will be \[X\] at temperature \[T = 280K\].
Hence, options (a) and (b) are correct.
Note:
Spontaneous reaction: It is a chemical reaction which favours the formation of products at a particular temperature. Change in Gibbs free energy i.e., \[\Delta G < 0\] is the mandatory condition for a reaction to be spontaneous.
Non-spontaneous reaction: It is a chemical reaction which does not favour the formation of products for specific conditions. Hence, for these reactions the reactants are the major components.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Trending doubts
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Which place is known as the tea garden of India class 8 social science CBSE

What is pollution? How many types of pollution? Define it

Write a letter to the principal requesting him to grant class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE
