# For $n,m\in N$,$n|m$ means that $n$ is factor of $m$, the relation $|$ is

A. Reflexive and symmetric

B. Transitive and symmetric

C. Reflexive, transitive and symmetric

D. Reflexive, transitive and not symmetric

Answer

Verified

325.8k+ views

Hint: Here we have been given that $n$ is a factor of $m$. So use $(a,a)\in R\forall a\in A$, $\forall a,b,c\in X:(aRb\wedge bRc)\Rightarrow aRc$ and $(a,b)\in R\Rightarrow (b,a)\in R$. You will get the answer.

Complete step-by-step answer:

In maths, a binary relation $R$ across a set $X$ is reflexive if each element of set $X$ is related or linked to itself. In terms of relations, this can be defined with $(a,a)\in R\forall a\in X$ or $I\in R$ where I is the identity relation on A. It has a reflexive property and is said to hold reflexivity. Symmetry, transitivity and reflexivity are the three properties representing equivalence relations.

In relation and functions, a reflexive relation is the one in which every element maps to itself. For example, let us consider a set $A=\{1,2\}$. Now here the reflexive relation will be $R=\{(1,1),(2,2),(1,2),(2.1)\}$. Hence, a relation is reflexive if:

$(a,a)\in R\forall a\in A$

where $a$ is the element, $A$ is the set and $R$ is the relation.

A binary relation $R$ over a set $X$ is transitive if whenever an element $a$ is related to an element $b$, and $b$ is in turn related to an element $c$, then a is also related to $c$.

$\forall a,b,c\in X:(aRb\wedge bRc)\Rightarrow aRc$

On the other hand, "is the mother of" is not a transitive relation, because if Alice is the mother of Brenda, and Brenda is the mother of Claire, then Alice is not the mother of Claire. What is more, it is anti transitive: Alice can never be the mother of Claire.

Let $A$ be a set in which the relation $R$ defined. Then $R$ is said to be a symmetric relation, if $(a,b)\in R\Rightarrow (b,a)\in R$, that is, $aRb\Rightarrow bRa$ for all $(a,b)\in R$.

Consider, for example, the set $A$ of natural numbers. If a relation $A$ be defined by $''(x+y)''$, then this relation is symmetric in $A$, for $a+b=5\Rightarrow b+a=5$.

But in the set $A$ of natural numbers if the relation $R$ be defined as ‘$x$ is a divisor of $y$’, then the relation $R$ is not symmetric as $3R9$ does not imply $9R3$; for, $3$ divides $9$ but $9$ does not divide $3$.

For a symmetric relation $R$, ${{R}^{-1}}=R$.

Since $n$ is a factor of $n$, since every natural number is a factor of itself so the relation is reflexive.

If $n$ is a factor of $m$ and $m$ is a factor of $p$, then $n$ is surely a factor of $p$, so the relation is transitive.

If however $n$ is a factor of $m$, $m$ is not necessarily a factor of $n$ so the relation is not symmetric.

Hence, the answer is option D.

Note: Read the question carefully. You should know the concept of reflexive, transitive and symmetric. Also, you should know the basics of these and their properties. You must also know the types of properties.

Complete step-by-step answer:

In maths, a binary relation $R$ across a set $X$ is reflexive if each element of set $X$ is related or linked to itself. In terms of relations, this can be defined with $(a,a)\in R\forall a\in X$ or $I\in R$ where I is the identity relation on A. It has a reflexive property and is said to hold reflexivity. Symmetry, transitivity and reflexivity are the three properties representing equivalence relations.

In relation and functions, a reflexive relation is the one in which every element maps to itself. For example, let us consider a set $A=\{1,2\}$. Now here the reflexive relation will be $R=\{(1,1),(2,2),(1,2),(2.1)\}$. Hence, a relation is reflexive if:

$(a,a)\in R\forall a\in A$

where $a$ is the element, $A$ is the set and $R$ is the relation.

A binary relation $R$ over a set $X$ is transitive if whenever an element $a$ is related to an element $b$, and $b$ is in turn related to an element $c$, then a is also related to $c$.

$\forall a,b,c\in X:(aRb\wedge bRc)\Rightarrow aRc$

On the other hand, "is the mother of" is not a transitive relation, because if Alice is the mother of Brenda, and Brenda is the mother of Claire, then Alice is not the mother of Claire. What is more, it is anti transitive: Alice can never be the mother of Claire.

Let $A$ be a set in which the relation $R$ defined. Then $R$ is said to be a symmetric relation, if $(a,b)\in R\Rightarrow (b,a)\in R$, that is, $aRb\Rightarrow bRa$ for all $(a,b)\in R$.

Consider, for example, the set $A$ of natural numbers. If a relation $A$ be defined by $''(x+y)''$, then this relation is symmetric in $A$, for $a+b=5\Rightarrow b+a=5$.

But in the set $A$ of natural numbers if the relation $R$ be defined as ‘$x$ is a divisor of $y$’, then the relation $R$ is not symmetric as $3R9$ does not imply $9R3$; for, $3$ divides $9$ but $9$ does not divide $3$.

For a symmetric relation $R$, ${{R}^{-1}}=R$.

Since $n$ is a factor of $n$, since every natural number is a factor of itself so the relation is reflexive.

If $n$ is a factor of $m$ and $m$ is a factor of $p$, then $n$ is surely a factor of $p$, so the relation is transitive.

If however $n$ is a factor of $m$, $m$ is not necessarily a factor of $n$ so the relation is not symmetric.

Hence, the answer is option D.

Note: Read the question carefully. You should know the concept of reflexive, transitive and symmetric. Also, you should know the basics of these and their properties. You must also know the types of properties.

Last updated date: 28th May 2023

•

Total views: 325.8k

•

Views today: 5.84k

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE