For $n,m\in N$,$n|m$ means that $n$ is factor of $m$, the relation $|$ is
A. Reflexive and symmetric
B. Transitive and symmetric
C. Reflexive, transitive and symmetric
D. Reflexive, transitive and not symmetric
Answer
361.8k+ views
Hint: Here we have been given that $n$ is a factor of $m$. So use $(a,a)\in R\forall a\in A$, $\forall a,b,c\in X:(aRb\wedge bRc)\Rightarrow aRc$ and $(a,b)\in R\Rightarrow (b,a)\in R$. You will get the answer.
Complete step-by-step answer:
In maths, a binary relation $R$ across a set $X$ is reflexive if each element of set $X$ is related or linked to itself. In terms of relations, this can be defined with $(a,a)\in R\forall a\in X$ or $I\in R$ where I is the identity relation on A. It has a reflexive property and is said to hold reflexivity. Symmetry, transitivity and reflexivity are the three properties representing equivalence relations.
In relation and functions, a reflexive relation is the one in which every element maps to itself. For example, let us consider a set $A=\{1,2\}$. Now here the reflexive relation will be $R=\{(1,1),(2,2),(1,2),(2.1)\}$. Hence, a relation is reflexive if:
$(a,a)\in R\forall a\in A$
where $a$ is the element, $A$ is the set and $R$ is the relation.
A binary relation $R$ over a set $X$ is transitive if whenever an element $a$ is related to an element $b$, and $b$ is in turn related to an element $c$, then a is also related to $c$.
$\forall a,b,c\in X:(aRb\wedge bRc)\Rightarrow aRc$
On the other hand, "is the mother of" is not a transitive relation, because if Alice is the mother of Brenda, and Brenda is the mother of Claire, then Alice is not the mother of Claire. What is more, it is anti transitive: Alice can never be the mother of Claire.
Let $A$ be a set in which the relation $R$ defined. Then $R$ is said to be a symmetric relation, if $(a,b)\in R\Rightarrow (b,a)\in R$, that is, $aRb\Rightarrow bRa$ for all $(a,b)\in R$.
Consider, for example, the set $A$ of natural numbers. If a relation $A$ be defined by $''(x+y)''$, then this relation is symmetric in $A$, for $a+b=5\Rightarrow b+a=5$.
But in the set $A$ of natural numbers if the relation $R$ be defined as ‘$x$ is a divisor of $y$’, then the relation $R$ is not symmetric as $3R9$ does not imply $9R3$; for, $3$ divides $9$ but $9$ does not divide $3$.
For a symmetric relation $R$, ${{R}^{-1}}=R$.
Since $n$ is a factor of $n$, since every natural number is a factor of itself so the relation is reflexive.
If $n$ is a factor of $m$ and $m$ is a factor of $p$, then $n$ is surely a factor of $p$, so the relation is transitive.
If however $n$ is a factor of $m$, $m$ is not necessarily a factor of $n$ so the relation is not symmetric.
Hence, the answer is option D.
Note: Read the question carefully. You should know the concept of reflexive, transitive and symmetric. Also, you should know the basics of these and their properties. You must also know the types of properties.
Complete step-by-step answer:
In maths, a binary relation $R$ across a set $X$ is reflexive if each element of set $X$ is related or linked to itself. In terms of relations, this can be defined with $(a,a)\in R\forall a\in X$ or $I\in R$ where I is the identity relation on A. It has a reflexive property and is said to hold reflexivity. Symmetry, transitivity and reflexivity are the three properties representing equivalence relations.
In relation and functions, a reflexive relation is the one in which every element maps to itself. For example, let us consider a set $A=\{1,2\}$. Now here the reflexive relation will be $R=\{(1,1),(2,2),(1,2),(2.1)\}$. Hence, a relation is reflexive if:
$(a,a)\in R\forall a\in A$
where $a$ is the element, $A$ is the set and $R$ is the relation.
A binary relation $R$ over a set $X$ is transitive if whenever an element $a$ is related to an element $b$, and $b$ is in turn related to an element $c$, then a is also related to $c$.
$\forall a,b,c\in X:(aRb\wedge bRc)\Rightarrow aRc$
On the other hand, "is the mother of" is not a transitive relation, because if Alice is the mother of Brenda, and Brenda is the mother of Claire, then Alice is not the mother of Claire. What is more, it is anti transitive: Alice can never be the mother of Claire.
Let $A$ be a set in which the relation $R$ defined. Then $R$ is said to be a symmetric relation, if $(a,b)\in R\Rightarrow (b,a)\in R$, that is, $aRb\Rightarrow bRa$ for all $(a,b)\in R$.
Consider, for example, the set $A$ of natural numbers. If a relation $A$ be defined by $''(x+y)''$, then this relation is symmetric in $A$, for $a+b=5\Rightarrow b+a=5$.
But in the set $A$ of natural numbers if the relation $R$ be defined as ‘$x$ is a divisor of $y$’, then the relation $R$ is not symmetric as $3R9$ does not imply $9R3$; for, $3$ divides $9$ but $9$ does not divide $3$.
For a symmetric relation $R$, ${{R}^{-1}}=R$.
Since $n$ is a factor of $n$, since every natural number is a factor of itself so the relation is reflexive.
If $n$ is a factor of $m$ and $m$ is a factor of $p$, then $n$ is surely a factor of $p$, so the relation is transitive.
If however $n$ is a factor of $m$, $m$ is not necessarily a factor of $n$ so the relation is not symmetric.
Hence, the answer is option D.
Note: Read the question carefully. You should know the concept of reflexive, transitive and symmetric. Also, you should know the basics of these and their properties. You must also know the types of properties.
Last updated date: 24th Sep 2023
•
Total views: 361.8k
•
Views today: 3.61k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the past tense of read class 10 english CBSE
