Answer
Verified
371.1k+ views
Hint: Here in this question, we have to determine the given limit of a function having the greatest integer \[[x]\] which is less than or equal to \[x\]. here the limit is left hand limit i.e., in the form of \[\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right)\] , in given function which ‘x’ approaches ‘0’ through values less than ‘0’. Then we apply the limit to the function and simplify by using the properties of limit function, we get the required solution.
Complete step by step answer:
A left-hand limit means the limit of a function as it approaches from the left-hand side.
The left hand limit of function \[f\left( x \right)\] as \['x'\] tends to \['a'\] exists and is equal to \[{l_2}\], if as \['x'\] approaches \['a'\] through values less than \['a'\]. i.e.,
\[\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = {l_2}\]
Where, \[{a^ - }\] means \[\left( {a - h} \right)\] and \[h \to 0\]. Therefore, \[f\left( {a - h} \right)\].
Consider the given limit function,
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{x\left( {\left[ x \right] + \left| x \right|} \right)\sin \left[ x \right]}}{{\left| x \right|}}\]------(1)
Take some substitution for \[\mathop {\lim }\limits_{x \to {a^ - }} f(x)\] put \[x = a - h\] and change the limit as \[x \to {a^ - }\] by \[h \to 0\], then Equation (1) becomes
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {a - h} \right)\left( {\left[ {\left( {a - h} \right)} \right] + \left| {\left( {a - h} \right)} \right|} \right)\sin \left[ {\left( {a - h} \right)} \right]}}{{\left| {\left( {a - h} \right)} \right|}}\]
But \[a = 0\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {0 - h} \right)\left( {\left[ {\left( {0 - h} \right)} \right] + \left| {\left( {0 - h} \right)} \right|} \right)\sin \left[ {\left( {0 - h} \right)} \right]}}{{\left| {\left( {0 - h} \right)} \right|}}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{h \to 0} \dfrac{{ - h\left( {\left[ { - h} \right] + \left| {\left( { - h} \right)} \right|} \right)\sin \left[ { - h} \right]}}{{\left| { - h} \right|}}\]
As we know the greatest integer of \[\left[ { - h} \right]\] is -1 i.e., \[\left[ { - h} \right] = - 1\] and the absolute value of \[\left| { - h} \right| = h\], then on substituting we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{h \to 0} \dfrac{{ - h\left( { - 1 + h} \right)\sin \left( { - 1} \right)}}{h}\]
On cancelling the like terms \[h\] on both numerator and denominator, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( { - 1 + h} \right)\sin \left( { - 1} \right)}}{1}\]
By the product and quotient property of limit of a function, then
\[ \Rightarrow \,\,\,\dfrac{{\mathop {\lim }\limits_{h \to 0} \left( {1 - h} \right) \cdot \mathop {\lim }\limits_{h \to 0} \left( { - \sin 1} \right)}}{{\mathop {\lim }\limits_{h \to 0} \left( 1 \right)}}\]
On applying a limit value, we get
\[ \Rightarrow \,\,\,\dfrac{{\left( {1 - 0} \right) \cdot \left( { - \sin 1} \right)}}{1}\]
\[ \Rightarrow \,\,\, - \sin 1\]
Hence, the left hand limit value of \[\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{x\left( {\left[ x \right] + \left| x \right|} \right)\sin \left[ x \right]}}{{\left| x \right|}} = - \sin 1\].
Therefore, option C is correct.
Note: Remember the function \[\left[ x \right]\] is a greatest integer function for any real function. The function rounds -off the real number down to the integer less than the number. And the product and quotient properties of limits are defined as: The function \[f\left( x \right)\] and \[g\left( x \right)\] is are non-zero finite values, given that
\[\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right)\]
\[\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\] and
Also \[\mathop {\lim }\limits_{x \to a} k\,f\left( a \right) = k\mathop {\lim }\limits_{x \to a} f\left( a \right)\].
Complete step by step answer:
A left-hand limit means the limit of a function as it approaches from the left-hand side.
The left hand limit of function \[f\left( x \right)\] as \['x'\] tends to \['a'\] exists and is equal to \[{l_2}\], if as \['x'\] approaches \['a'\] through values less than \['a'\]. i.e.,
\[\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = {l_2}\]
Where, \[{a^ - }\] means \[\left( {a - h} \right)\] and \[h \to 0\]. Therefore, \[f\left( {a - h} \right)\].
Consider the given limit function,
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{x\left( {\left[ x \right] + \left| x \right|} \right)\sin \left[ x \right]}}{{\left| x \right|}}\]------(1)
Take some substitution for \[\mathop {\lim }\limits_{x \to {a^ - }} f(x)\] put \[x = a - h\] and change the limit as \[x \to {a^ - }\] by \[h \to 0\], then Equation (1) becomes
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {a - h} \right)\left( {\left[ {\left( {a - h} \right)} \right] + \left| {\left( {a - h} \right)} \right|} \right)\sin \left[ {\left( {a - h} \right)} \right]}}{{\left| {\left( {a - h} \right)} \right|}}\]
But \[a = 0\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {0 - h} \right)\left( {\left[ {\left( {0 - h} \right)} \right] + \left| {\left( {0 - h} \right)} \right|} \right)\sin \left[ {\left( {0 - h} \right)} \right]}}{{\left| {\left( {0 - h} \right)} \right|}}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{h \to 0} \dfrac{{ - h\left( {\left[ { - h} \right] + \left| {\left( { - h} \right)} \right|} \right)\sin \left[ { - h} \right]}}{{\left| { - h} \right|}}\]
As we know the greatest integer of \[\left[ { - h} \right]\] is -1 i.e., \[\left[ { - h} \right] = - 1\] and the absolute value of \[\left| { - h} \right| = h\], then on substituting we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{h \to 0} \dfrac{{ - h\left( { - 1 + h} \right)\sin \left( { - 1} \right)}}{h}\]
On cancelling the like terms \[h\] on both numerator and denominator, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( { - 1 + h} \right)\sin \left( { - 1} \right)}}{1}\]
By the product and quotient property of limit of a function, then
\[ \Rightarrow \,\,\,\dfrac{{\mathop {\lim }\limits_{h \to 0} \left( {1 - h} \right) \cdot \mathop {\lim }\limits_{h \to 0} \left( { - \sin 1} \right)}}{{\mathop {\lim }\limits_{h \to 0} \left( 1 \right)}}\]
On applying a limit value, we get
\[ \Rightarrow \,\,\,\dfrac{{\left( {1 - 0} \right) \cdot \left( { - \sin 1} \right)}}{1}\]
\[ \Rightarrow \,\,\, - \sin 1\]
Hence, the left hand limit value of \[\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{x\left( {\left[ x \right] + \left| x \right|} \right)\sin \left[ x \right]}}{{\left| x \right|}} = - \sin 1\].
Therefore, option C is correct.
Note: Remember the function \[\left[ x \right]\] is a greatest integer function for any real function. The function rounds -off the real number down to the integer less than the number. And the product and quotient properties of limits are defined as: The function \[f\left( x \right)\] and \[g\left( x \right)\] is are non-zero finite values, given that
\[\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right)\]
\[\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\] and
Also \[\mathop {\lim }\limits_{x \to a} k\,f\left( a \right) = k\mathop {\lim }\limits_{x \to a} f\left( a \right)\].
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE