Answer
Verified
372.3k+ views
Hint: Find the coefficient of linear expansion for each sides and then use the formula to find the coefficient of volume expansion then compare them to get the relation between the coefficient of volume expansion to linear expansion.
Formula used:
The linear expansion of any solid is given by,
\[l' = {l_0}(1 + \alpha \Delta T)\]
where, \[l'\] is the expanded length of the solid during change in temperature \[\Delta T\] , \[{l_0}\] is the initial length and \[\alpha \] is the expansion coefficient.
The volume expansion of any solid,
\[V' = {V_0}(1 + \gamma \Delta T)\]
where, \[V'\]is the expanded volume of the solid during change in temperature \[\Delta T\] , \[{V_0}\] is the initial length and \[\gamma \] is the expansion coefficient.
Complete step by step answer:
We have here an anisotropic solid and we have to find the relation between the coefficient of volume expansion and the coefficient of linear expansion. Now, since anisotropic solids stretch in length in different directions.
So, let the change in length along different axes are,
Change along the x axis: \[{l_x}' = {l_{x0}}(1 + {\alpha _x}\Delta T)\]
Change along the y axis: \[{l_y}' = {l_{y0}}(1 + {\alpha _y}\Delta T)\]
Change along the z axis: \[{l_z}' = {l_{z0}}(1 + {\alpha _z}\Delta T)\]
So, multiplying this three equations we will have,
\[{l_x}'{l_y}'{l_z}' = {l_{z0}}(1 + {\alpha _z}\Delta T){l_{y0}}(1 + {\alpha _y}\Delta T){l_{x0}}(1 + {\alpha _x}\Delta T)\]
Or, \[{l_x}'{l_y}'{l_z}' = {l_{z0}}{l_{y0}}{l_{x0}}(1 + {\alpha _z}\Delta T)(1 + {\alpha _y}\Delta T)(1 + {\alpha _x}\Delta T)\]
Now, neglecting the higher order terms of \[\alpha \] (since the dimension of \[\alpha \]is very small so, \[{\alpha ^2},{\alpha ^3} < < \alpha \])
We will have,
\[{l_x}'{l_y}'{l_z}' = {l_{z0}}{l_{y0}}{l_{x0}}[1 + ({\alpha _x} + {\alpha _y} + {\alpha _z})\Delta T]\]
Now, the \[{l_x}'{l_y}'{l_z}'\] is equal to the volume after the change and \[{l_{z0}}{l_{y0}}{l_{x0}}\] is the initial volume.
So, replacing them we will have,
\[V' = {V_0}[1 + ({\alpha _x} + {\alpha _y} + {\alpha _z})\Delta T]\]
Now, we know that the volume expansion of any solid,
\[V' = {V_0}(1 + \gamma \Delta T)\]
where, \[V'\] is the expanded volume of the solid during change in temperature \[\Delta T\] , \[{V_0}\] is the initial length and \[\gamma \] is the volume expansion coefficient.
So, comparing these two equations we can write,
\[\therefore \gamma = ({\alpha _x} + {\alpha _y} + {\alpha _z})\]
Hence, the coefficient of volume expansion of anisotropic solid to linear expansion of is given by \[({\alpha _x} + {\alpha _y} + {\alpha _z})\]
Hence, option B is the correct answer.
Note: The relation of coefficient of volume expansion and linear expansion for different types of solid is different. Here, we can see that for anisotropic solid it is different in different direction but for isotropic solid it is same in every direction for that we will have the relation as, \[\gamma = 3{\alpha _x} = 3{\alpha _y} = 3{\alpha _z}\].
Formula used:
The linear expansion of any solid is given by,
\[l' = {l_0}(1 + \alpha \Delta T)\]
where, \[l'\] is the expanded length of the solid during change in temperature \[\Delta T\] , \[{l_0}\] is the initial length and \[\alpha \] is the expansion coefficient.
The volume expansion of any solid,
\[V' = {V_0}(1 + \gamma \Delta T)\]
where, \[V'\]is the expanded volume of the solid during change in temperature \[\Delta T\] , \[{V_0}\] is the initial length and \[\gamma \] is the expansion coefficient.
Complete step by step answer:
We have here an anisotropic solid and we have to find the relation between the coefficient of volume expansion and the coefficient of linear expansion. Now, since anisotropic solids stretch in length in different directions.
So, let the change in length along different axes are,
Change along the x axis: \[{l_x}' = {l_{x0}}(1 + {\alpha _x}\Delta T)\]
Change along the y axis: \[{l_y}' = {l_{y0}}(1 + {\alpha _y}\Delta T)\]
Change along the z axis: \[{l_z}' = {l_{z0}}(1 + {\alpha _z}\Delta T)\]
So, multiplying this three equations we will have,
\[{l_x}'{l_y}'{l_z}' = {l_{z0}}(1 + {\alpha _z}\Delta T){l_{y0}}(1 + {\alpha _y}\Delta T){l_{x0}}(1 + {\alpha _x}\Delta T)\]
Or, \[{l_x}'{l_y}'{l_z}' = {l_{z0}}{l_{y0}}{l_{x0}}(1 + {\alpha _z}\Delta T)(1 + {\alpha _y}\Delta T)(1 + {\alpha _x}\Delta T)\]
Now, neglecting the higher order terms of \[\alpha \] (since the dimension of \[\alpha \]is very small so, \[{\alpha ^2},{\alpha ^3} < < \alpha \])
We will have,
\[{l_x}'{l_y}'{l_z}' = {l_{z0}}{l_{y0}}{l_{x0}}[1 + ({\alpha _x} + {\alpha _y} + {\alpha _z})\Delta T]\]
Now, the \[{l_x}'{l_y}'{l_z}'\] is equal to the volume after the change and \[{l_{z0}}{l_{y0}}{l_{x0}}\] is the initial volume.
So, replacing them we will have,
\[V' = {V_0}[1 + ({\alpha _x} + {\alpha _y} + {\alpha _z})\Delta T]\]
Now, we know that the volume expansion of any solid,
\[V' = {V_0}(1 + \gamma \Delta T)\]
where, \[V'\] is the expanded volume of the solid during change in temperature \[\Delta T\] , \[{V_0}\] is the initial length and \[\gamma \] is the volume expansion coefficient.
So, comparing these two equations we can write,
\[\therefore \gamma = ({\alpha _x} + {\alpha _y} + {\alpha _z})\]
Hence, the coefficient of volume expansion of anisotropic solid to linear expansion of is given by \[({\alpha _x} + {\alpha _y} + {\alpha _z})\]
Hence, option B is the correct answer.
Note: The relation of coefficient of volume expansion and linear expansion for different types of solid is different. Here, we can see that for anisotropic solid it is different in different direction but for isotropic solid it is same in every direction for that we will have the relation as, \[\gamma = 3{\alpha _x} = 3{\alpha _y} = 3{\alpha _z}\].
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE