
For an ideal gas undergoing isothermal irreversible expansion:
(A) $\Delta U=0$
(B) $\Delta H=0$
(C) $\Delta S=0$
(D) $\Psi =0$
Answer
512.7k+ views
Hint: In thermodynamics, the system consists of those molecules which are reacting with collection of objects and rest of the system in the universe is surroundings. System in thermodynamics is three types, closed, open and isolated systems.
Complete answer:
A process or change is said to be reversible, if a change is brought out in such a way that the process could be reversed by an infinitesimal change. A reversible process proceeds infinitely slowly by a series of equilibrium states such that the system and the surroundings are always in near equilibrium with each other.
Processes other than reversible processes are known as irreversible processes.
Isothermal expansion of an ideal gas is an expansion of gas at constant temperature of the system , at change of heat with system and surroundings throughout the process.
In an isothermal process, $\Delta T=0$ then $\Delta U=0$ , hence there is no change in the internal energy at constant temperature.
Since, \[\begin{align}
& \Delta U=n{{c}_{p}}\Delta T=0 \\
& \Delta H=n{{c}_{p}}\Delta T=0, \\
\end{align}\]
Free expansion of a gas occurs when it is subjected to expansion in an irreversible process.
Hence, for an ideal gas isothermal irreversible expansion, $\Delta U=0\And \Delta H=0$
The correct answer is option A and B.
Note:
The reversible isothermal expansion of an ideal gas is a spontaneous process, because at equilibrium the density of gas is uniform throughout the system. If the process is at infinitely slowly so that microscopic reverse from the final state exactly generates the initial state at constant temperature with increase in the volume.
Complete answer:
A process or change is said to be reversible, if a change is brought out in such a way that the process could be reversed by an infinitesimal change. A reversible process proceeds infinitely slowly by a series of equilibrium states such that the system and the surroundings are always in near equilibrium with each other.
Processes other than reversible processes are known as irreversible processes.
Isothermal expansion of an ideal gas is an expansion of gas at constant temperature of the system , at change of heat with system and surroundings throughout the process.
In an isothermal process, $\Delta T=0$ then $\Delta U=0$ , hence there is no change in the internal energy at constant temperature.
Since, \[\begin{align}
& \Delta U=n{{c}_{p}}\Delta T=0 \\
& \Delta H=n{{c}_{p}}\Delta T=0, \\
\end{align}\]
Free expansion of a gas occurs when it is subjected to expansion in an irreversible process.
Hence, for an ideal gas isothermal irreversible expansion, $\Delta U=0\And \Delta H=0$
The correct answer is option A and B.
Note:
The reversible isothermal expansion of an ideal gas is a spontaneous process, because at equilibrium the density of gas is uniform throughout the system. If the process is at infinitely slowly so that microscopic reverse from the final state exactly generates the initial state at constant temperature with increase in the volume.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
