Answer
Verified
447.6k+ views
Hint:We will have to start the question by hit trial. That is we have to put values for different n and check for divisibility and further can be proved by principle of mathematical induction.
Complete step-by-step answer:
We have to check whether \[{3^{2n}} - 2n + 1\] is divisible by any of the options for all values of n which belong to natural numbers.
We will start by putting 1 in place of n and check the divisibility –
=\[{3^{2n}} - 2n + 1\]
=\[{3^{2(1)}} - 2(1) + 1\]
=\[9 - 2 + 1\]
=\[8\]
Therefore, it is divisible by 2, 4 and 8 from the options.
Now, we will put 2 in place of n, we get –
=\[{3^{2n}} - 2n + 1\]
=\[{3^{2(2)}} - 2(2) + 1\]
=\[81 - 4 + 1\]
=\[78\]
This is divisible by only 2.
Therefore, 2 is the correct answer.
So, the correct answer is “Option A”.
Note:This question can be solved by an alternative method by principle of mathematical induction.
Consider $f(n)$ = \[{3^{2n}} - 2n + 1\]
Let us check if it is divisible by 2 for that it must be true for n=1,
=\[{3^{2n}} - 2n + 1\]
=\[{3^{2(1)}} - 2(1) + 1\]
=\[9 - 2 + 1\]
=\[8\]
Therefore, it is divisible by 2.
Let us assume that \[{3^{2n}} - 2n + 1\] is divisible by 2 for any value of n=m.
=\[{3^{2n}} - 2n + 1\]
For n=m we have,
$F(m)$ =\[{3^{2(m)}} - 2(m) + 1\] = $2p……….. (1)$ (Since, it is assumed to be divisible by 2)
Now, we check for n=m+1,
$F(m+1)$ =\[{3^{2(m + 1)}} - 2(m + 1) + 1\]
$F(m+1)$ =\[{9.3^{2}} - 2(m) - 1\]
Rearranging and adding 1 and subtracting 1 we get,
=\[{3^{2n}} - 2(n) - 1 + ( - 1 - 1) + {8.3^{2n}}\]
=\[{3^{2n}} - 2(n) - 1 + {8.3^{2n}} - 2\]
From (1) we have,
=\[2p + 2({4.3^{2n}} - 1)\]
=\[2[p + ({4.3^{2n}} - 1)]\]
From above equation it is divisible by 2
Since, F(m + 1) is true, whenever F(m) is true.
Thus, F(1) is true and F(k + 1) is true, whenever F(k) is true.
Hence, by the principle of mathematical induction, F(n) is true for all n ∈ N.
Complete step-by-step answer:
We have to check whether \[{3^{2n}} - 2n + 1\] is divisible by any of the options for all values of n which belong to natural numbers.
We will start by putting 1 in place of n and check the divisibility –
=\[{3^{2n}} - 2n + 1\]
=\[{3^{2(1)}} - 2(1) + 1\]
=\[9 - 2 + 1\]
=\[8\]
Therefore, it is divisible by 2, 4 and 8 from the options.
Now, we will put 2 in place of n, we get –
=\[{3^{2n}} - 2n + 1\]
=\[{3^{2(2)}} - 2(2) + 1\]
=\[81 - 4 + 1\]
=\[78\]
This is divisible by only 2.
Therefore, 2 is the correct answer.
So, the correct answer is “Option A”.
Note:This question can be solved by an alternative method by principle of mathematical induction.
Consider $f(n)$ = \[{3^{2n}} - 2n + 1\]
Let us check if it is divisible by 2 for that it must be true for n=1,
=\[{3^{2n}} - 2n + 1\]
=\[{3^{2(1)}} - 2(1) + 1\]
=\[9 - 2 + 1\]
=\[8\]
Therefore, it is divisible by 2.
Let us assume that \[{3^{2n}} - 2n + 1\] is divisible by 2 for any value of n=m.
=\[{3^{2n}} - 2n + 1\]
For n=m we have,
$F(m)$ =\[{3^{2(m)}} - 2(m) + 1\] = $2p……….. (1)$ (Since, it is assumed to be divisible by 2)
Now, we check for n=m+1,
$F(m+1)$ =\[{3^{2(m + 1)}} - 2(m + 1) + 1\]
$F(m+1)$ =\[{9.3^{2}} - 2(m) - 1\]
Rearranging and adding 1 and subtracting 1 we get,
=\[{3^{2n}} - 2(n) - 1 + ( - 1 - 1) + {8.3^{2n}}\]
=\[{3^{2n}} - 2(n) - 1 + {8.3^{2n}} - 2\]
From (1) we have,
=\[2p + 2({4.3^{2n}} - 1)\]
=\[2[p + ({4.3^{2n}} - 1)]\]
From above equation it is divisible by 2
Since, F(m + 1) is true, whenever F(m) is true.
Thus, F(1) is true and F(k + 1) is true, whenever F(k) is true.
Hence, by the principle of mathematical induction, F(n) is true for all n ∈ N.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE