
For a G.P, if \[{{\left( m+n \right)}^{th}}\] term is p and \[{{\left( m-n \right)}^{th}}\] term is q, then \[{{m}^{th}}\] term is ________.
(a) \[pq\]
(b) \[\sqrt{pq}\]
(c) \[\dfrac{p}{q}\]
(d) \[\dfrac{q}{p}\]
Answer
606k+ views
Hint: Write the formula for \[{{\left( m+n \right)}^{th}}\] term and \[{{\left( m-n \right)}^{th}}\] term and multiply them to get the expression for \[{{m}^{th}}\] term directly.
Complete step-by-step answer:
We are given that \[{{\left( m+n \right)}^{th}}\] term of G.P is p and \[{{\left( m-n \right)}^{th}}\] term of G.P is q. We have to find the \[{{m}^{th}}\] term of this G.P.
We know that any general geometric progression (G.P) series of the form
\[a,ar,a{{r}^{2}},a{{r}^{3}}.....\]
where a = first term, r = common ratio
We know that \[{{n}^{th}}\] term of G.P is \[a{{r}^{n-1}}\], i.e.
\[{{a}_{n}}=a{{r}^{n-1}}.....\left( i \right)\]
Now, to get \[{{\left( m+n \right)}^{th}}\] term, we will replace ‘n’ by \[\left( m+n \right)\] in equation (i).
Therefore, we get \[{{\left( m+n \right)}^{th}}\] term as
\[{{a}_{m+n}}=a{{r}^{m+n-1}}=p....\left( ii \right)\]
Now, to get \[{{\left( m-n \right)}^{th}}\] term, we will replace ‘n’ by \[\left( m-n \right)\] in equation (i)
Therefore, we get \[{{\left( m-n \right)}^{th}}\] term as
\[{{a}_{m-n}}=a{{r}^{m-n-1}}=q.....\left( iii \right)\]
Now, by multiplying equation (ii) and (iii), we get,
\[\left( {{a}_{m+n}} \right)\left( {{a}_{m-n}} \right)=\left( a{{r}^{m+n-1}} \right)\left( a{{r}^{m-n-1}} \right)=pq\]
Since, we know that
\[{{a}^{m}}.{{a}^{n}}={{a}^{m+n}}\]
Therefore, we get,
\[\left( {{a}^{1+1}} \right).\left( {{r}^{\left( m+n-1 \right)+\left( m-n-1 \right)}} \right)=pq\]
\[=\left( {{a}^{2}} \right).{{r}^{\left( 2m-2 \right)}}=pq\]
Or, \[{{\left( a \right)}^{2}}{{\left( {{r}^{m-1}} \right)}^{2}}=pq\]
By taking 2 common from powers, we get,
\[{{\left( a.{{r}^{m-1}} \right)}^{2}}=pq\]
By taking square roots on both sides. We get,
\[\sqrt{{{\left( a{{r}^{m-1}} \right)}^{2}}}=\sqrt{pq}\]
Since, we know that
\[\sqrt{{{a}^{2}}}=a\]
Therefore, we get
\[a.{{r}^{m-1}}=\sqrt{pq}....\left( iv \right)\]
Now, to get the \[{{m}^{th}}\] term, we will replace ‘n’ by ‘m’ in equation (i). We get
\[{{a}_{m}}=a{{r}^{m-1}}\]
From equation (iv), we have found that \[a{{r}^{m-1}}\] which is equal to \[{{a}_{m}}\text{ or }{{m}^{th}}\] term. Therefore,
\[{{a}_{m}}=a{{r}^{m-1}}=\sqrt{pq}\]
Hence, option (b) is correct.
Note: Some students make the mistake of finding ‘r’ and ‘a’ which are common ratio and first term of G.P separately and then putting it in the formula for \[{{m}^{th}}\] term. But that is a time consuming and lengthy method as here we have found the \[{{m}^{th}}\] term without finding ‘r’ and ‘a’ separately.
Complete step-by-step answer:
We are given that \[{{\left( m+n \right)}^{th}}\] term of G.P is p and \[{{\left( m-n \right)}^{th}}\] term of G.P is q. We have to find the \[{{m}^{th}}\] term of this G.P.
We know that any general geometric progression (G.P) series of the form
\[a,ar,a{{r}^{2}},a{{r}^{3}}.....\]
where a = first term, r = common ratio
We know that \[{{n}^{th}}\] term of G.P is \[a{{r}^{n-1}}\], i.e.
\[{{a}_{n}}=a{{r}^{n-1}}.....\left( i \right)\]
Now, to get \[{{\left( m+n \right)}^{th}}\] term, we will replace ‘n’ by \[\left( m+n \right)\] in equation (i).
Therefore, we get \[{{\left( m+n \right)}^{th}}\] term as
\[{{a}_{m+n}}=a{{r}^{m+n-1}}=p....\left( ii \right)\]
Now, to get \[{{\left( m-n \right)}^{th}}\] term, we will replace ‘n’ by \[\left( m-n \right)\] in equation (i)
Therefore, we get \[{{\left( m-n \right)}^{th}}\] term as
\[{{a}_{m-n}}=a{{r}^{m-n-1}}=q.....\left( iii \right)\]
Now, by multiplying equation (ii) and (iii), we get,
\[\left( {{a}_{m+n}} \right)\left( {{a}_{m-n}} \right)=\left( a{{r}^{m+n-1}} \right)\left( a{{r}^{m-n-1}} \right)=pq\]
Since, we know that
\[{{a}^{m}}.{{a}^{n}}={{a}^{m+n}}\]
Therefore, we get,
\[\left( {{a}^{1+1}} \right).\left( {{r}^{\left( m+n-1 \right)+\left( m-n-1 \right)}} \right)=pq\]
\[=\left( {{a}^{2}} \right).{{r}^{\left( 2m-2 \right)}}=pq\]
Or, \[{{\left( a \right)}^{2}}{{\left( {{r}^{m-1}} \right)}^{2}}=pq\]
By taking 2 common from powers, we get,
\[{{\left( a.{{r}^{m-1}} \right)}^{2}}=pq\]
By taking square roots on both sides. We get,
\[\sqrt{{{\left( a{{r}^{m-1}} \right)}^{2}}}=\sqrt{pq}\]
Since, we know that
\[\sqrt{{{a}^{2}}}=a\]
Therefore, we get
\[a.{{r}^{m-1}}=\sqrt{pq}....\left( iv \right)\]
Now, to get the \[{{m}^{th}}\] term, we will replace ‘n’ by ‘m’ in equation (i). We get
\[{{a}_{m}}=a{{r}^{m-1}}\]
From equation (iv), we have found that \[a{{r}^{m-1}}\] which is equal to \[{{a}_{m}}\text{ or }{{m}^{th}}\] term. Therefore,
\[{{a}_{m}}=a{{r}^{m-1}}=\sqrt{pq}\]
Hence, option (b) is correct.
Note: Some students make the mistake of finding ‘r’ and ‘a’ which are common ratio and first term of G.P separately and then putting it in the formula for \[{{m}^{th}}\] term. But that is a time consuming and lengthy method as here we have found the \[{{m}^{th}}\] term without finding ‘r’ and ‘a’ separately.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

