
For a given velocity, a projectile has the same range $R$ for two angles of projection. If ${t_1}$ and ${t_2}$ are the time of flight in the two cases, then:
A) ${t_1}{t_2}\alpha R$
B) ${t_1}{t_2}\alpha {R^2}$
C) ${t_1}{t_2}\alpha \dfrac{1}{{{R^2}}}$
D) ${t_1}{t_2}\alpha \dfrac{1}{R}$
Answer
464.7k+ views
Hint:The range of the projectile along the horizontal plane is given by $R = \dfrac{{{u^2}\sin 2\theta }}{g}$ . The time of flight for the projectile is given by $t = \dfrac{{2u\sin \theta }}{g}$ . We need to find the angles for which the ranges are equal and then for those ranges we need to find and compare the time period.
Complete step-by-step solution:We need to find two angles for which the range is equal.
The Range $R$ of the projectile motion is given as:
$R = \dfrac{{{u^2}\sin 2\theta }}{g}$
Here, $u$ is the initial velocity at which the projectile is projected.
$\theta $ is the angle of projection
$g$ is the acceleration due to gravity;
We need to find two angles such that their ranges are equal.
Let the two angles be ${\theta _1}$ and ${\theta _2}$ , now the corresponding range will be:
$R = \dfrac{{{u^2}\sin 2{\theta _1}}}{g}$ And $R = \dfrac{{{u^2}\sin 2{\theta _2}}}{g}$
Two ranges are equal when the angles are complementary, that is
${\theta _1} + {\theta _2} = {90^ \circ }$
$ \Rightarrow {\theta _2} = {90^ \circ } - {\theta _1}$ --equation $1$
As time of flight is given as
$t = \dfrac{{2u\sin \theta }}{g}$
The time of flight for angle of projections ${\theta _1}$ and ${\theta _2}$ , will be
${t_1} = \dfrac{{2u\sin {\theta _1}}}{g}$ and ${t_2} = \dfrac{{2u\sin {\theta _2}}}{g}$
From equation $1$ , the time of flight ${t_2}$ , will be
$\;{t_2} = \dfrac{{2u\sin \left( {{{90}^ \circ } - {\theta _1}} \right)}}{g}$
$\; \Rightarrow {t_2} = \dfrac{{2ucos{\theta _1}}}{g}$
We have values of ${t_1},{t_2}$ and we need the relation between ${t_1} \times {t_2}$ and $\;R$ .
$\;{t_1} \times {t_2} = \dfrac{{2u\sin {\theta _1}}}{g} \times \;\dfrac{{2ucos{\theta _1}}}{g}$
Solving further, we get
$\;{t_1} \times {t_2} = 2\dfrac{{{u^2}\left( {2\sin {\theta _1}cos{\theta _1}} \right)}}{{{g^2}}}\;$
$ \Rightarrow \;{t_1} \times {t_2} = 2\dfrac{{{u^2}\sin 2{\theta _1}\;}}{{{g^2}}}$
Also, we know that, $\sin 2{\theta _1} = 2\sin {\theta _1}cos{\theta _1}$
But $R = \dfrac{{{u^2}\sin 2{\theta _1}}}{g}$ , therefore we can have
$\;{t_1} \times {t_2} = 2\dfrac{{{u^2}\sin 2{\theta _1}\;}}{{{g^2}}}$
$\;\theta = {45^ \circ }$
This means that the product of time periods when range is equal is directly proportional to the range.
${t_1}{t_2}\alpha R$
Thus, option A is the correct option.
Note:Remember the formulas for range and time period for a particle in projectile motion. Also, we used some trigonometric identities in this problem, remember those identities too. It is to be noted that the range is maximum when $\;\theta = {45^ \circ }$ and height is maximum when $\;\theta = {0^ \circ }$ that is when a particle is thrown vertically upwards.
Complete step-by-step solution:We need to find two angles for which the range is equal.
The Range $R$ of the projectile motion is given as:
$R = \dfrac{{{u^2}\sin 2\theta }}{g}$
Here, $u$ is the initial velocity at which the projectile is projected.
$\theta $ is the angle of projection
$g$ is the acceleration due to gravity;
We need to find two angles such that their ranges are equal.
Let the two angles be ${\theta _1}$ and ${\theta _2}$ , now the corresponding range will be:
$R = \dfrac{{{u^2}\sin 2{\theta _1}}}{g}$ And $R = \dfrac{{{u^2}\sin 2{\theta _2}}}{g}$
Two ranges are equal when the angles are complementary, that is
${\theta _1} + {\theta _2} = {90^ \circ }$
$ \Rightarrow {\theta _2} = {90^ \circ } - {\theta _1}$ --equation $1$
As time of flight is given as
$t = \dfrac{{2u\sin \theta }}{g}$
The time of flight for angle of projections ${\theta _1}$ and ${\theta _2}$ , will be
${t_1} = \dfrac{{2u\sin {\theta _1}}}{g}$ and ${t_2} = \dfrac{{2u\sin {\theta _2}}}{g}$
From equation $1$ , the time of flight ${t_2}$ , will be
$\;{t_2} = \dfrac{{2u\sin \left( {{{90}^ \circ } - {\theta _1}} \right)}}{g}$
$\; \Rightarrow {t_2} = \dfrac{{2ucos{\theta _1}}}{g}$
We have values of ${t_1},{t_2}$ and we need the relation between ${t_1} \times {t_2}$ and $\;R$ .
$\;{t_1} \times {t_2} = \dfrac{{2u\sin {\theta _1}}}{g} \times \;\dfrac{{2ucos{\theta _1}}}{g}$
Solving further, we get
$\;{t_1} \times {t_2} = 2\dfrac{{{u^2}\left( {2\sin {\theta _1}cos{\theta _1}} \right)}}{{{g^2}}}\;$
$ \Rightarrow \;{t_1} \times {t_2} = 2\dfrac{{{u^2}\sin 2{\theta _1}\;}}{{{g^2}}}$
Also, we know that, $\sin 2{\theta _1} = 2\sin {\theta _1}cos{\theta _1}$
But $R = \dfrac{{{u^2}\sin 2{\theta _1}}}{g}$ , therefore we can have
$\;{t_1} \times {t_2} = 2\dfrac{{{u^2}\sin 2{\theta _1}\;}}{{{g^2}}}$
$\;\theta = {45^ \circ }$
This means that the product of time periods when range is equal is directly proportional to the range.
${t_1}{t_2}\alpha R$
Thus, option A is the correct option.
Note:Remember the formulas for range and time period for a particle in projectile motion. Also, we used some trigonometric identities in this problem, remember those identities too. It is to be noted that the range is maximum when $\;\theta = {45^ \circ }$ and height is maximum when $\;\theta = {0^ \circ }$ that is when a particle is thrown vertically upwards.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Find the image of the point 38 about the line x+3y class 11 maths CBSE

Can anyone list 10 advantages and disadvantages of friction

Distinguish between Mitosis and Meiosis class 11 biology CBSE
