
For a first order reaction with rate constant \[k\] and initial concentration \[a\], the half-life period is given by:
(This question has multiple correct options)
A. \[\dfrac{{\ln 2}}{k}\]
B. \[\dfrac{1}{{ka}}\]
C. \[\dfrac{{0.693}}{k}\]
D. \[\dfrac{{2.303}}{k}\log 2\]
Answer
431.7k+ views
Hint: First order reaction: It is a chemical reaction in which the rate of the reaction depends on the concentration of one reactant only. The other reactants in the first order reaction will be of zero order. The rate law for first order reaction is \[{\rm{rate}} = k\left[ A \right]\], where \[k\] is the rate constant of the reaction.
Complete answer:
Differential rate law: It is the method to describe rate in terms of the change in concentration of reactants over a specific period of time. These rate laws are very helpful in determining the mechanism of overall reaction.
Integrated rate law: It is the method to describe rate in terms of initial and final concentration of reactants in a chemical reaction after a particular amount of time.
For first order reaction, the differential rate law is as follows:
\[ - \dfrac{{d[A]}}{{dt}} = k[A]\]
Therefore, integrated rate law for first order reaction can be written as follows:
\[\int\limits_{{{[A]}_o}}^{{{[A]}_t}} {\dfrac{{d[A]}}{{[A]}}} = - k\int\limits_0^t {dt} \]
Where, \[{[A]_o}\] is the initial concentration of reactant and \[{[A]_t}\] is the final concentration of the reactant.
\[ \Rightarrow \left[ {\ln [A]} \right]_{{{[A]}_o}}^{{{[A]}_t}} = - kt\]
\[ \Rightarrow \ln {[A]_t} - \ln {[A]_o} = - kt\]
\[ \Rightarrow \ln \dfrac{{{{[A]}_o}}}{{{{[A]}_t}}} = kt\,\, - - (i)\]
Converting natural logarithmic function into log function with base \[10\].
\[ \Rightarrow 2.303\log \dfrac{{{{[A]}_o}}}{{{{[A]}_t}}} = kt\,\, - - (ii)\]
Half-life period: It is the time required by a reactant to reach \[50\% \] of its initial concentration.
Therefore, at \[t = {t_{\dfrac{1}{2}}}\], the relation between initial concentration and final concentration is \[{[A]_t} = \dfrac{{{{[A]}_o}}}{2}\]
According to the given conditions, \[{[A]_o} = a\]. So, \[{[A]_t} = \dfrac{a}{2}\]
Substituting values at half-life conditions in equation \[(i)\].
\[\ln \dfrac{a}{{\dfrac{a}{2}}} = k{t_{\dfrac{1}{2}}}\]
\[ \Rightarrow {t_{\dfrac{1}{2}}} = \dfrac{{\ln 2}}{k}\,\, - - (ii)\]
\[ \Rightarrow {t_{\dfrac{1}{2}}} = \dfrac{{0.693}}{k}\; - - (iii)\]
Substituting values at half-life conditions in equation \[(ii)\]
\[2.303\log \dfrac{a}{{\dfrac{a}{2}}} = k{t_{\dfrac{1}{2}}}\,\,\]
\[ \Rightarrow {t_{\dfrac{1}{2}}} = \dfrac{{2.303}}{k}\log 2\, - - (iv)\]
Hence according to equations \[(ii)\], \[(iii)\] and \[(iv)\], options (A), (C) and (D) are correct.
Note:
Most of the radioactive decay reactions are of first order reaction. Hence the study of first order kinetics is very important due to its wide use in various chemical reactions. It also guides how to increase or decrease the rate of reaction over a certain set of conditions.
Complete answer:
Differential rate law: It is the method to describe rate in terms of the change in concentration of reactants over a specific period of time. These rate laws are very helpful in determining the mechanism of overall reaction.
Integrated rate law: It is the method to describe rate in terms of initial and final concentration of reactants in a chemical reaction after a particular amount of time.
For first order reaction, the differential rate law is as follows:
\[ - \dfrac{{d[A]}}{{dt}} = k[A]\]
Therefore, integrated rate law for first order reaction can be written as follows:
\[\int\limits_{{{[A]}_o}}^{{{[A]}_t}} {\dfrac{{d[A]}}{{[A]}}} = - k\int\limits_0^t {dt} \]
Where, \[{[A]_o}\] is the initial concentration of reactant and \[{[A]_t}\] is the final concentration of the reactant.
\[ \Rightarrow \left[ {\ln [A]} \right]_{{{[A]}_o}}^{{{[A]}_t}} = - kt\]
\[ \Rightarrow \ln {[A]_t} - \ln {[A]_o} = - kt\]
\[ \Rightarrow \ln \dfrac{{{{[A]}_o}}}{{{{[A]}_t}}} = kt\,\, - - (i)\]
Converting natural logarithmic function into log function with base \[10\].
\[ \Rightarrow 2.303\log \dfrac{{{{[A]}_o}}}{{{{[A]}_t}}} = kt\,\, - - (ii)\]
Half-life period: It is the time required by a reactant to reach \[50\% \] of its initial concentration.
Therefore, at \[t = {t_{\dfrac{1}{2}}}\], the relation between initial concentration and final concentration is \[{[A]_t} = \dfrac{{{{[A]}_o}}}{2}\]
According to the given conditions, \[{[A]_o} = a\]. So, \[{[A]_t} = \dfrac{a}{2}\]
Substituting values at half-life conditions in equation \[(i)\].
\[\ln \dfrac{a}{{\dfrac{a}{2}}} = k{t_{\dfrac{1}{2}}}\]
\[ \Rightarrow {t_{\dfrac{1}{2}}} = \dfrac{{\ln 2}}{k}\,\, - - (ii)\]
\[ \Rightarrow {t_{\dfrac{1}{2}}} = \dfrac{{0.693}}{k}\; - - (iii)\]
Substituting values at half-life conditions in equation \[(ii)\]
\[2.303\log \dfrac{a}{{\dfrac{a}{2}}} = k{t_{\dfrac{1}{2}}}\,\,\]
\[ \Rightarrow {t_{\dfrac{1}{2}}} = \dfrac{{2.303}}{k}\log 2\, - - (iv)\]
Hence according to equations \[(ii)\], \[(iii)\] and \[(iv)\], options (A), (C) and (D) are correct.
Note:
Most of the radioactive decay reactions are of first order reaction. Hence the study of first order kinetics is very important due to its wide use in various chemical reactions. It also guides how to increase or decrease the rate of reaction over a certain set of conditions.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
