Answer
Verified
380.1k+ views
Hint: The general gas equation, also known as the ideal gas law, is the state equation of a potentially ideal gas. While it has many drawbacks, it is a reasonable approximation of the action of certain gases under several conditions.
Complete answer:
The molar mass of a chemical compound is known as the mass of a sample divided by the amount of material in the sample, measured in moles, in chemistry. The molar mass of a material is a bulk property, not a molecular property.
Let's call the unknown gas X.
Let \[{M_N}\] and \[{M_X}\] represent the nitrogen and other gas molar masses, respectively.
Using the ideal gas equation-
PV = nRT
Given data,
P = 2.8 bar
V = 4 L
T = 273 K
R = \[{\mathbf{0}}.{\mathbf{0821LatmJ}}{{\mathbf{K}}^{ - 1}}{\mathbf{mo}}{{\mathbf{l}}^{ - 1}}\]
The total number of moles in the solution (n) = \[ = \dfrac{{2.8 \times 4}}{{0.0821 \times 273}} = 0.5{\text{ moles }}\]
The number of moles of nitrogen gas is given as 0.4 moles
The number of moles of gas X = 0.5 – 0.4 = 0.1
Now, according to Graham's diffusion rule,
\[{\text{ rate of effusion }} = \dfrac{{{\text{ no}}{\text{. of moles }}}}{{{\text{ time taken }}}}\]
Given that t=10 minutes
Rate of effusion of nitrogen \[\left( {{{\mathbf{r}}_{\text{N}}}} \right) = \dfrac{{0.4}}{{10}} = 0.04\]
Rate of effusion of gas X \[\left( {{{\text{r}}_{\text{X}}}} \right) = \dfrac{{0.1}}{{10}} = 0.01\]
Furthermore, we are aware that
\[\dfrac{{{{\text{r}}_{\text{N}}}}}{{{{\text{r}}_{\text{X}}}}} = \sqrt {\dfrac{{{{\text{M}}_{\text{X}}}}}{{{{\text{M}}_{\text{N}}}}}} \]
We know that the molar mass of nitrogen gas is 28g.
\[\therefore \dfrac{{{\mathbf{0}}.{\mathbf{04}}}}{{{\mathbf{0}}.{\mathbf{01}}}} = \sqrt {\dfrac{{{{\mathbf{M}}_{\mathbf{X}}}}}{{{\mathbf{28}}}}} \]
\[ \Rightarrow \sqrt {{{\text{M}}_{\text{X}}}} = 4 \times \sqrt {28} \]
Squaring on both sides, we have
\[{{\mathbf{M}}_{\mathbf{X}}} = {\mathbf{16}} \times {\mathbf{28}} = {\mathbf{448gm}}/{\mathbf{mol}}\]
Therefore the molar mass of unknown gas is 448gm/mol.
Note:
Nitrogen is an inert gas, which means it doesn't react chemically with other gases and isn't harmful. However, breathing pure nitrogen is lethal. This is due to the gas's ability to displace oxygen in the lungs. According to the US Chemical Safety and Hazard Investigation Board, unconsciousness can occur in as few as one or two breaths.
Complete answer:
The molar mass of a chemical compound is known as the mass of a sample divided by the amount of material in the sample, measured in moles, in chemistry. The molar mass of a material is a bulk property, not a molecular property.
Let's call the unknown gas X.
Let \[{M_N}\] and \[{M_X}\] represent the nitrogen and other gas molar masses, respectively.
Using the ideal gas equation-
PV = nRT
Given data,
P = 2.8 bar
V = 4 L
T = 273 K
R = \[{\mathbf{0}}.{\mathbf{0821LatmJ}}{{\mathbf{K}}^{ - 1}}{\mathbf{mo}}{{\mathbf{l}}^{ - 1}}\]
The total number of moles in the solution (n) = \[ = \dfrac{{2.8 \times 4}}{{0.0821 \times 273}} = 0.5{\text{ moles }}\]
The number of moles of nitrogen gas is given as 0.4 moles
The number of moles of gas X = 0.5 – 0.4 = 0.1
Now, according to Graham's diffusion rule,
\[{\text{ rate of effusion }} = \dfrac{{{\text{ no}}{\text{. of moles }}}}{{{\text{ time taken }}}}\]
Given that t=10 minutes
Rate of effusion of nitrogen \[\left( {{{\mathbf{r}}_{\text{N}}}} \right) = \dfrac{{0.4}}{{10}} = 0.04\]
Rate of effusion of gas X \[\left( {{{\text{r}}_{\text{X}}}} \right) = \dfrac{{0.1}}{{10}} = 0.01\]
Furthermore, we are aware that
\[\dfrac{{{{\text{r}}_{\text{N}}}}}{{{{\text{r}}_{\text{X}}}}} = \sqrt {\dfrac{{{{\text{M}}_{\text{X}}}}}{{{{\text{M}}_{\text{N}}}}}} \]
We know that the molar mass of nitrogen gas is 28g.
\[\therefore \dfrac{{{\mathbf{0}}.{\mathbf{04}}}}{{{\mathbf{0}}.{\mathbf{01}}}} = \sqrt {\dfrac{{{{\mathbf{M}}_{\mathbf{X}}}}}{{{\mathbf{28}}}}} \]
\[ \Rightarrow \sqrt {{{\text{M}}_{\text{X}}}} = 4 \times \sqrt {28} \]
Squaring on both sides, we have
\[{{\mathbf{M}}_{\mathbf{X}}} = {\mathbf{16}} \times {\mathbf{28}} = {\mathbf{448gm}}/{\mathbf{mol}}\]
Therefore the molar mass of unknown gas is 448gm/mol.
Note:
Nitrogen is an inert gas, which means it doesn't react chemically with other gases and isn't harmful. However, breathing pure nitrogen is lethal. This is due to the gas's ability to displace oxygen in the lungs. According to the US Chemical Safety and Hazard Investigation Board, unconsciousness can occur in as few as one or two breaths.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Draw a labelled sketch of the human eye class 12 physics CBSE