Answer
Verified
436.2k+ views
Hint: We have a trigonometric expression as: $\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\sqrt{2}$
We can write $\sqrt{2}=\text{cosec}\dfrac{\pi }{4}$ . As the expression contains $\text{cosec}\theta $ , try to convert the expression in terms of $\sin \theta $ . Then, we can write $\sin \dfrac{\pi }{4}$ as $\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$
Later on, by using the identity: $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ , split the term $\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$. Now, simplify the whole expression by cancelling the terms to get an equation in terms of $\cot \theta $ . Now, expand the summation given by putting values of m and cancel out to the terms to get a simplified equation. Now, using various trigonometric identities, find the value of $\theta $
Complete step by step answer:
We have:
$\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\sqrt{2}......(1)$
As we know that: $\text{cosec}\dfrac{\pi }{4}=\sqrt{2}$
So, we can write equation (1) as:
$\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\text{cosec}\dfrac{\pi }{4}......(2)$
As we know that: $\text{cosec}\theta =\dfrac{1}{\sin \theta }$ , so we can write equation (2) as:
\[\begin{align}
& \sum\limits_{m=1}^{6}{\dfrac{1}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=\dfrac{4}{\text{sin}\dfrac{\pi }{4}} \\
& \sum\limits_{m=1}^{6}{\dfrac{\text{sin}\dfrac{\pi }{4}}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(3) \\
\end{align}\]
Now, we can write: $\sin \dfrac{\pi }{4}=\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$ in equation (3), we get:
\[\sum\limits_{m=1}^{6}{\dfrac{\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(4)\]
Now, by applying identity: $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$, we can write equation (4) as:
\[\sum\limits_{m=1}^{6}{\dfrac{\left[ \sin \left( \theta +\dfrac{m\pi }{4} \right)\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)-\cos \left( \theta +\dfrac{m\pi }{4} \right)\sin \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(5)\]
Now, by expanding the equation (5), we get:
\[\begin{align}
& \sum\limits_{m=1}^{6}{\dfrac{\sin \left( \theta +\dfrac{m\pi }{4} \right)\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}-\dfrac{\cos \left( \theta +\dfrac{m\pi }{4} \right)\sin \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}=4 \\
& \sum\limits_{m=1}^{6}{\dfrac{\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}}-\dfrac{\cos \left( \theta +\dfrac{m\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}=4......(6) \\
\end{align}\]
Since $\dfrac{\cos \theta }{\sin \theta }=\cot \theta $ , we can write equation (6) as:
\[\sum\limits_{m=1}^{6}{\cot \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}-\cot \left( \theta +\dfrac{m\pi }{4} \right)=4......(7)\]
Now, expand the summation by putting the values of m, we get:
\[\begin{align}
& \Rightarrow \left[ \cot \left( \theta +\dfrac{\left( 1-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{\pi }{4} \right) \right]+\left[ \cot \left( \theta +\dfrac{\left( 2-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{2\pi }{4} \right) \right] \\
& \text{ }+.....+\left[ \cot \left( \theta +\dfrac{\left( 6-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{6\pi }{4} \right) \right]=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{\pi }{4} \right)+\cot \left( \theta +\dfrac{\pi }{4} \right)-\cot \left( \theta +\dfrac{2\pi }{4} \right) \\
& \text{ }+.....+\cot \left( \theta +\dfrac{5\pi }{4} \right)-\cot \left( \theta +\dfrac{6\pi }{4} \right)=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{6\pi }{4} \right)=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{3\pi }{2} \right)=4......(8) \\
\end{align}\]
As we know that: $\cot \left( \dfrac{3\pi }{2}+\theta \right)=-\tan \theta $
So, we can write equation (8) as:
\[\Rightarrow \cot \theta +\tan \theta =4......(9)\]
Now, write $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ in equation (9), we get:
\[\begin{align}
& \Rightarrow \cot \theta +\tan \theta =4 \\
& \Rightarrow \dfrac{\cos \theta }{\sin \theta }+\dfrac{\sin \theta }{\cos \theta }=4 \\
& \Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =4\sin \theta \cos \theta ......(10) \\
\end{align}\]
As we know that: \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] and \[2\sin \theta \cos \theta =\sin 2\theta \], so we can write equation (10) as:
\[\Rightarrow 1=2\sin 2\theta ......(11)\]
Now, solving for $\theta $, we can write equation (11) as:
\[\begin{align}
& \Rightarrow \sin 2\theta =\dfrac{1}{2} \\
& \Rightarrow \sin 2\theta =\sin \dfrac{\pi }{6}\text{ or }\sin \dfrac{5\pi }{6} \\
& \Rightarrow 2\theta =\dfrac{\pi }{6}\text{ or }\dfrac{5\pi }{6} \\
& \Rightarrow \theta =\dfrac{\pi }{12}\text{ or }\dfrac{5\pi }{12} \\
\end{align}\]
So, the correct answer is “Option C and D”.
Note: For a given trigonometric expression, it is always easier to convert the expression in terms of sine and cosine. Also, if a summation expression is given, always try to expand the summation by putting the values of the variable and cancel out the terms if possible.
We can write $\sqrt{2}=\text{cosec}\dfrac{\pi }{4}$ . As the expression contains $\text{cosec}\theta $ , try to convert the expression in terms of $\sin \theta $ . Then, we can write $\sin \dfrac{\pi }{4}$ as $\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$
Later on, by using the identity: $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ , split the term $\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$. Now, simplify the whole expression by cancelling the terms to get an equation in terms of $\cot \theta $ . Now, expand the summation given by putting values of m and cancel out to the terms to get a simplified equation. Now, using various trigonometric identities, find the value of $\theta $
Complete step by step answer:
We have:
$\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\sqrt{2}......(1)$
As we know that: $\text{cosec}\dfrac{\pi }{4}=\sqrt{2}$
So, we can write equation (1) as:
$\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\text{cosec}\dfrac{\pi }{4}......(2)$
As we know that: $\text{cosec}\theta =\dfrac{1}{\sin \theta }$ , so we can write equation (2) as:
\[\begin{align}
& \sum\limits_{m=1}^{6}{\dfrac{1}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=\dfrac{4}{\text{sin}\dfrac{\pi }{4}} \\
& \sum\limits_{m=1}^{6}{\dfrac{\text{sin}\dfrac{\pi }{4}}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(3) \\
\end{align}\]
Now, we can write: $\sin \dfrac{\pi }{4}=\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$ in equation (3), we get:
\[\sum\limits_{m=1}^{6}{\dfrac{\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(4)\]
Now, by applying identity: $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$, we can write equation (4) as:
\[\sum\limits_{m=1}^{6}{\dfrac{\left[ \sin \left( \theta +\dfrac{m\pi }{4} \right)\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)-\cos \left( \theta +\dfrac{m\pi }{4} \right)\sin \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(5)\]
Now, by expanding the equation (5), we get:
\[\begin{align}
& \sum\limits_{m=1}^{6}{\dfrac{\sin \left( \theta +\dfrac{m\pi }{4} \right)\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}-\dfrac{\cos \left( \theta +\dfrac{m\pi }{4} \right)\sin \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}=4 \\
& \sum\limits_{m=1}^{6}{\dfrac{\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}}-\dfrac{\cos \left( \theta +\dfrac{m\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}=4......(6) \\
\end{align}\]
Since $\dfrac{\cos \theta }{\sin \theta }=\cot \theta $ , we can write equation (6) as:
\[\sum\limits_{m=1}^{6}{\cot \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}-\cot \left( \theta +\dfrac{m\pi }{4} \right)=4......(7)\]
Now, expand the summation by putting the values of m, we get:
\[\begin{align}
& \Rightarrow \left[ \cot \left( \theta +\dfrac{\left( 1-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{\pi }{4} \right) \right]+\left[ \cot \left( \theta +\dfrac{\left( 2-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{2\pi }{4} \right) \right] \\
& \text{ }+.....+\left[ \cot \left( \theta +\dfrac{\left( 6-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{6\pi }{4} \right) \right]=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{\pi }{4} \right)+\cot \left( \theta +\dfrac{\pi }{4} \right)-\cot \left( \theta +\dfrac{2\pi }{4} \right) \\
& \text{ }+.....+\cot \left( \theta +\dfrac{5\pi }{4} \right)-\cot \left( \theta +\dfrac{6\pi }{4} \right)=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{6\pi }{4} \right)=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{3\pi }{2} \right)=4......(8) \\
\end{align}\]
As we know that: $\cot \left( \dfrac{3\pi }{2}+\theta \right)=-\tan \theta $
So, we can write equation (8) as:
\[\Rightarrow \cot \theta +\tan \theta =4......(9)\]
Now, write $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ in equation (9), we get:
\[\begin{align}
& \Rightarrow \cot \theta +\tan \theta =4 \\
& \Rightarrow \dfrac{\cos \theta }{\sin \theta }+\dfrac{\sin \theta }{\cos \theta }=4 \\
& \Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =4\sin \theta \cos \theta ......(10) \\
\end{align}\]
As we know that: \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] and \[2\sin \theta \cos \theta =\sin 2\theta \], so we can write equation (10) as:
\[\Rightarrow 1=2\sin 2\theta ......(11)\]
Now, solving for $\theta $, we can write equation (11) as:
\[\begin{align}
& \Rightarrow \sin 2\theta =\dfrac{1}{2} \\
& \Rightarrow \sin 2\theta =\sin \dfrac{\pi }{6}\text{ or }\sin \dfrac{5\pi }{6} \\
& \Rightarrow 2\theta =\dfrac{\pi }{6}\text{ or }\dfrac{5\pi }{6} \\
& \Rightarrow \theta =\dfrac{\pi }{12}\text{ or }\dfrac{5\pi }{12} \\
\end{align}\]
So, the correct answer is “Option C and D”.
Note: For a given trigonometric expression, it is always easier to convert the expression in terms of sine and cosine. Also, if a summation expression is given, always try to expand the summation by putting the values of the variable and cancel out the terms if possible.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE