
For $0<\theta <\dfrac{\pi }{2}$ , the solution(s) of $\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\sqrt{2}$ is (are):
a)$\dfrac{\pi }{4}$
b)$\dfrac{\pi }{6}$
c)$\dfrac{\pi }{12}$
d) $\dfrac{5\pi }{12}$
Answer
475.8k+ views
Hint: We have a trigonometric expression as: $\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\sqrt{2}$
We can write $\sqrt{2}=\text{cosec}\dfrac{\pi }{4}$ . As the expression contains $\text{cosec}\theta $ , try to convert the expression in terms of $\sin \theta $ . Then, we can write $\sin \dfrac{\pi }{4}$ as $\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$
Later on, by using the identity: $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ , split the term $\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$. Now, simplify the whole expression by cancelling the terms to get an equation in terms of $\cot \theta $ . Now, expand the summation given by putting values of m and cancel out to the terms to get a simplified equation. Now, using various trigonometric identities, find the value of $\theta $
Complete step by step answer:
We have:
$\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\sqrt{2}......(1)$
As we know that: $\text{cosec}\dfrac{\pi }{4}=\sqrt{2}$
So, we can write equation (1) as:
$\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\text{cosec}\dfrac{\pi }{4}......(2)$
As we know that: $\text{cosec}\theta =\dfrac{1}{\sin \theta }$ , so we can write equation (2) as:
\[\begin{align}
& \sum\limits_{m=1}^{6}{\dfrac{1}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=\dfrac{4}{\text{sin}\dfrac{\pi }{4}} \\
& \sum\limits_{m=1}^{6}{\dfrac{\text{sin}\dfrac{\pi }{4}}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(3) \\
\end{align}\]
Now, we can write: $\sin \dfrac{\pi }{4}=\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$ in equation (3), we get:
\[\sum\limits_{m=1}^{6}{\dfrac{\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(4)\]
Now, by applying identity: $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$, we can write equation (4) as:
\[\sum\limits_{m=1}^{6}{\dfrac{\left[ \sin \left( \theta +\dfrac{m\pi }{4} \right)\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)-\cos \left( \theta +\dfrac{m\pi }{4} \right)\sin \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(5)\]
Now, by expanding the equation (5), we get:
\[\begin{align}
& \sum\limits_{m=1}^{6}{\dfrac{\sin \left( \theta +\dfrac{m\pi }{4} \right)\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}-\dfrac{\cos \left( \theta +\dfrac{m\pi }{4} \right)\sin \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}=4 \\
& \sum\limits_{m=1}^{6}{\dfrac{\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}}-\dfrac{\cos \left( \theta +\dfrac{m\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}=4......(6) \\
\end{align}\]
Since $\dfrac{\cos \theta }{\sin \theta }=\cot \theta $ , we can write equation (6) as:
\[\sum\limits_{m=1}^{6}{\cot \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}-\cot \left( \theta +\dfrac{m\pi }{4} \right)=4......(7)\]
Now, expand the summation by putting the values of m, we get:
\[\begin{align}
& \Rightarrow \left[ \cot \left( \theta +\dfrac{\left( 1-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{\pi }{4} \right) \right]+\left[ \cot \left( \theta +\dfrac{\left( 2-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{2\pi }{4} \right) \right] \\
& \text{ }+.....+\left[ \cot \left( \theta +\dfrac{\left( 6-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{6\pi }{4} \right) \right]=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{\pi }{4} \right)+\cot \left( \theta +\dfrac{\pi }{4} \right)-\cot \left( \theta +\dfrac{2\pi }{4} \right) \\
& \text{ }+.....+\cot \left( \theta +\dfrac{5\pi }{4} \right)-\cot \left( \theta +\dfrac{6\pi }{4} \right)=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{6\pi }{4} \right)=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{3\pi }{2} \right)=4......(8) \\
\end{align}\]
As we know that: $\cot \left( \dfrac{3\pi }{2}+\theta \right)=-\tan \theta $
So, we can write equation (8) as:
\[\Rightarrow \cot \theta +\tan \theta =4......(9)\]
Now, write $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ in equation (9), we get:
\[\begin{align}
& \Rightarrow \cot \theta +\tan \theta =4 \\
& \Rightarrow \dfrac{\cos \theta }{\sin \theta }+\dfrac{\sin \theta }{\cos \theta }=4 \\
& \Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =4\sin \theta \cos \theta ......(10) \\
\end{align}\]
As we know that: \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] and \[2\sin \theta \cos \theta =\sin 2\theta \], so we can write equation (10) as:
\[\Rightarrow 1=2\sin 2\theta ......(11)\]
Now, solving for $\theta $, we can write equation (11) as:
\[\begin{align}
& \Rightarrow \sin 2\theta =\dfrac{1}{2} \\
& \Rightarrow \sin 2\theta =\sin \dfrac{\pi }{6}\text{ or }\sin \dfrac{5\pi }{6} \\
& \Rightarrow 2\theta =\dfrac{\pi }{6}\text{ or }\dfrac{5\pi }{6} \\
& \Rightarrow \theta =\dfrac{\pi }{12}\text{ or }\dfrac{5\pi }{12} \\
\end{align}\]
So, the correct answer is “Option C and D”.
Note: For a given trigonometric expression, it is always easier to convert the expression in terms of sine and cosine. Also, if a summation expression is given, always try to expand the summation by putting the values of the variable and cancel out the terms if possible.
We can write $\sqrt{2}=\text{cosec}\dfrac{\pi }{4}$ . As the expression contains $\text{cosec}\theta $ , try to convert the expression in terms of $\sin \theta $ . Then, we can write $\sin \dfrac{\pi }{4}$ as $\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$
Later on, by using the identity: $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ , split the term $\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$. Now, simplify the whole expression by cancelling the terms to get an equation in terms of $\cot \theta $ . Now, expand the summation given by putting values of m and cancel out to the terms to get a simplified equation. Now, using various trigonometric identities, find the value of $\theta $
Complete step by step answer:
We have:
$\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\sqrt{2}......(1)$
As we know that: $\text{cosec}\dfrac{\pi }{4}=\sqrt{2}$
So, we can write equation (1) as:
$\sum\limits_{m=1}^{6}{\text{cosec}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}\text{cosec}\left( \theta +\dfrac{m\pi }{4} \right)=4\text{cosec}\dfrac{\pi }{4}......(2)$
As we know that: $\text{cosec}\theta =\dfrac{1}{\sin \theta }$ , so we can write equation (2) as:
\[\begin{align}
& \sum\limits_{m=1}^{6}{\dfrac{1}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=\dfrac{4}{\text{sin}\dfrac{\pi }{4}} \\
& \sum\limits_{m=1}^{6}{\dfrac{\text{sin}\dfrac{\pi }{4}}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(3) \\
\end{align}\]
Now, we can write: $\sin \dfrac{\pi }{4}=\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]$ in equation (3), we get:
\[\sum\limits_{m=1}^{6}{\dfrac{\sin \left[ \left( \theta +\dfrac{m\pi }{4} \right)-\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(4)\]
Now, by applying identity: $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$, we can write equation (4) as:
\[\sum\limits_{m=1}^{6}{\dfrac{\left[ \sin \left( \theta +\dfrac{m\pi }{4} \right)\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)-\cos \left( \theta +\dfrac{m\pi }{4} \right)\sin \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right) \right]}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}=4......(5)\]
Now, by expanding the equation (5), we get:
\[\begin{align}
& \sum\limits_{m=1}^{6}{\dfrac{\sin \left( \theta +\dfrac{m\pi }{4} \right)\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}}-\dfrac{\cos \left( \theta +\dfrac{m\pi }{4} \right)\sin \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}=4 \\
& \sum\limits_{m=1}^{6}{\dfrac{\cos \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}}-\dfrac{\cos \left( \theta +\dfrac{m\pi }{4} \right)}{\text{sin}\left( \theta +\dfrac{m\pi }{4} \right)}=4......(6) \\
\end{align}\]
Since $\dfrac{\cos \theta }{\sin \theta }=\cot \theta $ , we can write equation (6) as:
\[\sum\limits_{m=1}^{6}{\cot \left( \theta +\dfrac{\left( m-1 \right)\pi }{4} \right)}-\cot \left( \theta +\dfrac{m\pi }{4} \right)=4......(7)\]
Now, expand the summation by putting the values of m, we get:
\[\begin{align}
& \Rightarrow \left[ \cot \left( \theta +\dfrac{\left( 1-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{\pi }{4} \right) \right]+\left[ \cot \left( \theta +\dfrac{\left( 2-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{2\pi }{4} \right) \right] \\
& \text{ }+.....+\left[ \cot \left( \theta +\dfrac{\left( 6-1 \right)\pi }{4} \right)-\cot \left( \theta +\dfrac{6\pi }{4} \right) \right]=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{\pi }{4} \right)+\cot \left( \theta +\dfrac{\pi }{4} \right)-\cot \left( \theta +\dfrac{2\pi }{4} \right) \\
& \text{ }+.....+\cot \left( \theta +\dfrac{5\pi }{4} \right)-\cot \left( \theta +\dfrac{6\pi }{4} \right)=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{6\pi }{4} \right)=4 \\
& \Rightarrow \cot \theta -\cot \left( \theta +\dfrac{3\pi }{2} \right)=4......(8) \\
\end{align}\]
As we know that: $\cot \left( \dfrac{3\pi }{2}+\theta \right)=-\tan \theta $
So, we can write equation (8) as:
\[\Rightarrow \cot \theta +\tan \theta =4......(9)\]
Now, write $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ in equation (9), we get:
\[\begin{align}
& \Rightarrow \cot \theta +\tan \theta =4 \\
& \Rightarrow \dfrac{\cos \theta }{\sin \theta }+\dfrac{\sin \theta }{\cos \theta }=4 \\
& \Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =4\sin \theta \cos \theta ......(10) \\
\end{align}\]
As we know that: \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] and \[2\sin \theta \cos \theta =\sin 2\theta \], so we can write equation (10) as:
\[\Rightarrow 1=2\sin 2\theta ......(11)\]
Now, solving for $\theta $, we can write equation (11) as:
\[\begin{align}
& \Rightarrow \sin 2\theta =\dfrac{1}{2} \\
& \Rightarrow \sin 2\theta =\sin \dfrac{\pi }{6}\text{ or }\sin \dfrac{5\pi }{6} \\
& \Rightarrow 2\theta =\dfrac{\pi }{6}\text{ or }\dfrac{5\pi }{6} \\
& \Rightarrow \theta =\dfrac{\pi }{12}\text{ or }\dfrac{5\pi }{12} \\
\end{align}\]
So, the correct answer is “Option C and D”.
Note: For a given trigonometric expression, it is always easier to convert the expression in terms of sine and cosine. Also, if a summation expression is given, always try to expand the summation by putting the values of the variable and cancel out the terms if possible.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
