
For $0 < \theta < \dfrac{\pi }{2}$, the solution of $\sum\limits_{m = 1}^6 {{\text{cosec}}\left( {\theta + \dfrac{{\left( {m - 1} \right)\pi }}{4}} \right){\text{cosec}}\left( {\theta + \dfrac{{m\pi }}{4}} \right)} = 4\sqrt 2 $ is/are?
$\left( a \right)\dfrac{\pi }{4}$
$\left( b \right)\dfrac{\pi }{6}$
$\left( c \right)\dfrac{\pi }{{12}}$
$\left( d \right)\dfrac{{5\pi }}{{12}}$
Answer
576.9k+ views
Hint: In this particular question use the concept that cosec x = (1/sin x), then expand the summation and use the property that $\dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\cot x - \cot \left( {x + a} \right)} \right]$, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given expression
$\sum\limits_{m = 1}^6 {{\text{cosec}}\left( {\theta + \dfrac{{\left( {m - 1} \right)\pi }}{4}} \right){\text{cosec}}\left( {\theta + \dfrac{{m\pi }}{4}} \right)} = 4\sqrt 2 $, for $0 < \theta < \dfrac{\pi }{2}$
Now we have to find out the values of $\theta $
As we know that cosec x = (1/sin x) so use this property in the above expression we have,
$ \Rightarrow \sum\limits_{m = 1}^6 {\dfrac{1}{{\sin \left( {\theta + \dfrac{{\left( {m - 1} \right)\pi }}{4}} \right)\sin \left( {\theta + \dfrac{{m\pi }}{4}} \right)}}} = 4\sqrt 2 $
Now expand the summation we have,
$ \Rightarrow \dfrac{1}{{\sin \theta \sin \left( {\theta + \dfrac{\pi }{4}} \right)}} + \dfrac{1}{{\sin \left( {\theta + \dfrac{\pi }{4}} \right)\sin \left( {\theta + \dfrac{{2\pi }}{4}} \right)}} + ........... + \dfrac{1}{{\sin \left( {\theta + \dfrac{{5\pi }}{4}} \right)\sin \left( {\theta + \dfrac{{6\pi }}{4}} \right)}} = 4\sqrt 2 $..... (1)
Now, simplify the above expression using the property which is given as,
$ \Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\dfrac{{\sin \left( {x + a - x} \right)}}{{\sin x\sin \left( {x + a} \right)}}} \right]$
$ \Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\dfrac{{\sin \left( {x + a} \right)\cos x - \cos \left( {x + a} \right)\sin x}}{{\sin x\sin \left( {x + a} \right)}}} \right]$, $\left[ {\because \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$
Now simplify we have,
$ \Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\dfrac{{\cos x}}{{\sin x}} - \dfrac{{\cos \left( {x + a} \right)}}{{\sin \left( {x + a} \right)}}} \right]$
$ \Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\cot x - \cot \left( {x + a} \right)} \right]$, where cot x = (cos x/sin x)
So use this property in equation (1), where a = $\dfrac{\pi }{4}$ so we have,
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\theta + \dfrac{\pi }{4}} \right) + \cot \left( {\theta + \dfrac{\pi }{4}} \right) - \cot \left( {\theta + \dfrac{{2\pi }}{4}} \right) + ...... + \cot \left( {\theta + \dfrac{{5\pi }}{4}} \right) - \cot \left( {\theta + \dfrac{{6\pi }}{4}} \right)} \right] = 4\sqrt 2 $
So as we see that except first and last term all the terms are cancel out so we have,
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\theta + \dfrac{{6\pi }}{4}} \right)} \right] = 4\sqrt 2 $
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\theta + \dfrac{{3\pi }}{2}} \right)} \right] = 4\sqrt 2 $
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\pi + \left( {\theta + \dfrac{\pi }{2}} \right)} \right)} \right] = 4\sqrt 2 $
Now as we know that $\cot \left( {\pi + x} \right) = \cot x$, as cot is positive in the third quadrant.
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\dfrac{\pi }{2} + \theta } \right)} \right] = 4\sqrt 2 $
Now as we know that $\cot \left( {\dfrac{\pi }{2} + x} \right) = - \tan x,\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$ so use this property we have,
$ \Rightarrow \dfrac{1}{{\dfrac{1}{{\sqrt 2 }}}}\left[ {\cot \theta + \tan \theta } \right] = 4\sqrt 2 $
$ \Rightarrow \left[ {\cot \theta + \tan \theta } \right] = 4$
$ \Rightarrow \left[ {\dfrac{1}{{\tan \theta }} + \tan \theta } \right] = 4$
$ \Rightarrow {\tan ^2}\theta - 4\tan \theta + 1 = 0$
So this is a quadratic equation so apply quadratic formula we have,
$ \Rightarrow \tan \theta = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$. Where, a = 1, b = -4, c = 1.
So we have,
$ \Rightarrow \tan \theta = \dfrac{{4 \pm \sqrt {{4^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}} = \dfrac{{4 \pm \sqrt {12} }}{2} = 2 \pm \sqrt 3 $
$ \Rightarrow \tan \theta = \left( {2 + \sqrt 3 } \right),\left( {2 - \sqrt 3 } \right)$
So when, $\tan \theta = \left( {2 + \sqrt 3 } \right)$
$ \Rightarrow \theta = \dfrac{{5\pi }}{{12}} = {75^o}$
And when, $\tan \theta = \left( {2 - \sqrt 3 } \right)$
$ \Rightarrow \theta = \dfrac{\pi }{{12}} = {15^o}$
So this is the required answer.
Hence options (c) and (d) are the correct answer.
Note:Whenever we face such types of questions the key concept we have to remember is that always recall basic trigonometric identities such as $\left[ {\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$, $\cot \left( {\pi + x} \right) = \cot x$, $\cot \left( {\dfrac{\pi }{2} + x} \right) = - \tan x,\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$, and always recall the formula to solve the complex quadratic equation which is stated above.
Complete step-by-step answer:
Given expression
$\sum\limits_{m = 1}^6 {{\text{cosec}}\left( {\theta + \dfrac{{\left( {m - 1} \right)\pi }}{4}} \right){\text{cosec}}\left( {\theta + \dfrac{{m\pi }}{4}} \right)} = 4\sqrt 2 $, for $0 < \theta < \dfrac{\pi }{2}$
Now we have to find out the values of $\theta $
As we know that cosec x = (1/sin x) so use this property in the above expression we have,
$ \Rightarrow \sum\limits_{m = 1}^6 {\dfrac{1}{{\sin \left( {\theta + \dfrac{{\left( {m - 1} \right)\pi }}{4}} \right)\sin \left( {\theta + \dfrac{{m\pi }}{4}} \right)}}} = 4\sqrt 2 $
Now expand the summation we have,
$ \Rightarrow \dfrac{1}{{\sin \theta \sin \left( {\theta + \dfrac{\pi }{4}} \right)}} + \dfrac{1}{{\sin \left( {\theta + \dfrac{\pi }{4}} \right)\sin \left( {\theta + \dfrac{{2\pi }}{4}} \right)}} + ........... + \dfrac{1}{{\sin \left( {\theta + \dfrac{{5\pi }}{4}} \right)\sin \left( {\theta + \dfrac{{6\pi }}{4}} \right)}} = 4\sqrt 2 $..... (1)
Now, simplify the above expression using the property which is given as,
$ \Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\dfrac{{\sin \left( {x + a - x} \right)}}{{\sin x\sin \left( {x + a} \right)}}} \right]$
$ \Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\dfrac{{\sin \left( {x + a} \right)\cos x - \cos \left( {x + a} \right)\sin x}}{{\sin x\sin \left( {x + a} \right)}}} \right]$, $\left[ {\because \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$
Now simplify we have,
$ \Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\dfrac{{\cos x}}{{\sin x}} - \dfrac{{\cos \left( {x + a} \right)}}{{\sin \left( {x + a} \right)}}} \right]$
$ \Rightarrow \dfrac{1}{{\sin x\sin \left( {x + a} \right)}} = \dfrac{1}{{\sin a}}\left[ {\cot x - \cot \left( {x + a} \right)} \right]$, where cot x = (cos x/sin x)
So use this property in equation (1), where a = $\dfrac{\pi }{4}$ so we have,
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\theta + \dfrac{\pi }{4}} \right) + \cot \left( {\theta + \dfrac{\pi }{4}} \right) - \cot \left( {\theta + \dfrac{{2\pi }}{4}} \right) + ...... + \cot \left( {\theta + \dfrac{{5\pi }}{4}} \right) - \cot \left( {\theta + \dfrac{{6\pi }}{4}} \right)} \right] = 4\sqrt 2 $
So as we see that except first and last term all the terms are cancel out so we have,
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\theta + \dfrac{{6\pi }}{4}} \right)} \right] = 4\sqrt 2 $
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\theta + \dfrac{{3\pi }}{2}} \right)} \right] = 4\sqrt 2 $
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\pi + \left( {\theta + \dfrac{\pi }{2}} \right)} \right)} \right] = 4\sqrt 2 $
Now as we know that $\cot \left( {\pi + x} \right) = \cot x$, as cot is positive in the third quadrant.
$ \Rightarrow \dfrac{1}{{\sin \dfrac{\pi }{4}}}\left[ {\cot \theta - \cot \left( {\dfrac{\pi }{2} + \theta } \right)} \right] = 4\sqrt 2 $
Now as we know that $\cot \left( {\dfrac{\pi }{2} + x} \right) = - \tan x,\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$ so use this property we have,
$ \Rightarrow \dfrac{1}{{\dfrac{1}{{\sqrt 2 }}}}\left[ {\cot \theta + \tan \theta } \right] = 4\sqrt 2 $
$ \Rightarrow \left[ {\cot \theta + \tan \theta } \right] = 4$
$ \Rightarrow \left[ {\dfrac{1}{{\tan \theta }} + \tan \theta } \right] = 4$
$ \Rightarrow {\tan ^2}\theta - 4\tan \theta + 1 = 0$
So this is a quadratic equation so apply quadratic formula we have,
$ \Rightarrow \tan \theta = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$. Where, a = 1, b = -4, c = 1.
So we have,
$ \Rightarrow \tan \theta = \dfrac{{4 \pm \sqrt {{4^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}} = \dfrac{{4 \pm \sqrt {12} }}{2} = 2 \pm \sqrt 3 $
$ \Rightarrow \tan \theta = \left( {2 + \sqrt 3 } \right),\left( {2 - \sqrt 3 } \right)$
So when, $\tan \theta = \left( {2 + \sqrt 3 } \right)$
$ \Rightarrow \theta = \dfrac{{5\pi }}{{12}} = {75^o}$
And when, $\tan \theta = \left( {2 - \sqrt 3 } \right)$
$ \Rightarrow \theta = \dfrac{\pi }{{12}} = {15^o}$
So this is the required answer.
Hence options (c) and (d) are the correct answer.
Note:Whenever we face such types of questions the key concept we have to remember is that always recall basic trigonometric identities such as $\left[ {\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$, $\cot \left( {\pi + x} \right) = \cot x$, $\cot \left( {\dfrac{\pi }{2} + x} \right) = - \tan x,\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$, and always recall the formula to solve the complex quadratic equation which is stated above.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

