Find x. \[{2^x} + {2^x} + {2^x} = 192\]
Answer
Verified
404.1k+ views
Hint: Identical numbers in which each number is raised to the same power can be added or simply we can multiply one of the numbers with the number of times it is asked to be added.
Complete step by step answer:
Step 1: taking $2^x$ common from left hand side and we get
\[{2^x} + {2^x} + {2^x} = 192\]
\[{2^x}(1 + 1 + 1) = 192\]
Adding all the terms inside the bracket, we get
\[{2^x} \times 3 = 192\]
Step 2: since we do not know the value of x so it is not possible to multiply 3 with 2x
Therefore, taking 3 into right hand side in the denominator, we get
\[{2^x} \times 3 = 192\]
\[{2^x} = \dfrac{{192}}{3}\]
Simplifying further, we get
\[{2^x} = 64\]
The above equation simply means that the possible values of x such that the whole number in the left hand side, after simplification, can be equal to 64.
Step 3: now from factorization method we can write,
\[64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2\]
Or
In terms of power we can write it as
\[64 = {2^6}\]
Now we have two equations, first is \[{2^x} = 64\] and second is \[64 = {2^6}\]
After comparing both equations we can write
\[{2^x} = 64\]
Now we can also write 64 as multiples of 2 i.e.
\[64 = {2^6}\]
Comparing both the equation, we get
\[ \Rightarrow \]\[{2^x} = {2^6}\]
Now, as we know that according to the law of exponent method
If\[{a^m} = {a^n}\], then \[m = n\]
So in equation \[{2^x} = {2^6}\] we have the same number on both sides and in which one is raised to power ‘x’ and other is raised to power ‘6’. Therefore, according to law of exponent we have
\[{2^x} = {2^6}\]
\[ \Rightarrow \]\[x = 6\]
Hence, that the value of \[x = 6\]
Note: Numbers with negative exponents obey the following laws of exponents,
\[{a^m} \times {a^n} = {a^{m + n}};{a^m} \div {a^n} = {a^{m - n}};{({a^m})^n} = {a^{mn}};{a^m} \times {b^m} = {(ab)^m};{a^0} = 1;\dfrac{{{a^m}}}{{{b^m}}} = {(\dfrac{a}{b})^m}\]
Complete step by step answer:
Step 1: taking $2^x$ common from left hand side and we get
\[{2^x} + {2^x} + {2^x} = 192\]
\[{2^x}(1 + 1 + 1) = 192\]
Adding all the terms inside the bracket, we get
\[{2^x} \times 3 = 192\]
Step 2: since we do not know the value of x so it is not possible to multiply 3 with 2x
Therefore, taking 3 into right hand side in the denominator, we get
\[{2^x} \times 3 = 192\]
\[{2^x} = \dfrac{{192}}{3}\]
Simplifying further, we get
\[{2^x} = 64\]
The above equation simply means that the possible values of x such that the whole number in the left hand side, after simplification, can be equal to 64.
Step 3: now from factorization method we can write,
\[64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2\]
Or
In terms of power we can write it as
\[64 = {2^6}\]
Now we have two equations, first is \[{2^x} = 64\] and second is \[64 = {2^6}\]
After comparing both equations we can write
\[{2^x} = 64\]
Now we can also write 64 as multiples of 2 i.e.
\[64 = {2^6}\]
Comparing both the equation, we get
\[ \Rightarrow \]\[{2^x} = {2^6}\]
Now, as we know that according to the law of exponent method
If\[{a^m} = {a^n}\], then \[m = n\]
So in equation \[{2^x} = {2^6}\] we have the same number on both sides and in which one is raised to power ‘x’ and other is raised to power ‘6’. Therefore, according to law of exponent we have
\[{2^x} = {2^6}\]
\[ \Rightarrow \]\[x = 6\]
Hence, that the value of \[x = 6\]
Note: Numbers with negative exponents obey the following laws of exponents,
\[{a^m} \times {a^n} = {a^{m + n}};{a^m} \div {a^n} = {a^{m - n}};{({a^m})^n} = {a^{mn}};{a^m} \times {b^m} = {(ab)^m};{a^0} = 1;\dfrac{{{a^m}}}{{{b^m}}} = {(\dfrac{a}{b})^m}\]
Recently Updated Pages
A house design given on an isometric dot sheet in an class 9 maths CBSE
How does air exert pressure class 9 chemistry CBSE
Name the highest summit of Nilgiri hills AVelliangiri class 9 social science CBSE
If log x+1x2+x624 then the values of twice the sum class 9 maths CBSE
How do you convert 245 into fraction and decimal class 9 maths CBSE
ABCD is a trapezium in which ABparallel DC and AB 2CD class 9 maths CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is the role of NGOs during disaster managemen class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
What is pollution? How many types of pollution? Define it