Answer
Verified
467.1k+ views
Hint: In order to solve this problem, we need to understand the concept of zeros of the polynomial. Zeros of the polynomial can be defined as the points where the polynomial becomes zero.
We need to factorize the quadratic equation and equate to zero to find the roots of the equation.
The roots itself are the zeros of the polynomial. In order to verify, we can use the property of the quadratic equation. In the equation $a{{x}^{2}}+bx+c=0$ , the sum of the roots is given by $\dfrac{-b}{a}$. In the equation $a{{x}^{2}}+bx+c=0$, the product of the roots is given by $\dfrac{c}{a}$.
Complete step-by-step solution:
We need to find the zeros of the above quadratic equation given above $p\left( x \right)={{x}^{2}}-3$.
Let’s understand by finding the zeros of the equation.
Zeros of the polynomial can be defined as the points where the polynomial becomes zero.
Here, we have a quadratic equation.
To find the zeros of the equation we need to factorize the equation.
As there is no middle term we can add and subtract the middle term with the coefficients of the square root of the constants.
Splitting the middle term, we get,
$\begin{align}
& p\left( x \right)={{x}^{2}}-3 \\
& ={{x}^{2}}+\sqrt{3}x-\sqrt{3}x-3
\end{align}$
Taking the value of x common from the first two terms and $\sqrt{3}$ from the next terms we get,
\[p\left( x \right)=x\left( x+\sqrt{3} \right)-\sqrt{3}\left( x+\sqrt{3} \right)\]
Taking $\left( x+\sqrt{3} \right)$ common we get,
$p\left( x \right)=\left( x+\sqrt{3} \right)\left( x-\sqrt{3} \right)$
We need to equate to zero, to find the points where the polynomial is zero.
Therefore, $\left( x+\sqrt{3} \right)\left( x-\sqrt{3} \right)=0$
This equation is satisfied only when anyone term is zero.
So, we have two points of x where the polynomial is zero.
The first point is $x+\sqrt{3}=0$ ,
$x=-\sqrt{3}$
The second point is $x-\sqrt{3}=0$ ,
$x=\sqrt{3}$
Hence, the two roots of the equation are $-\sqrt{3}$ and $\sqrt{3}$ .
In order to check this, we can use the property of the quadratic equation. In the equation $a{{x}^{2}}+bx+c=0$ , the sum of the roots is given by $\dfrac{-b}{a}$ . In this question the sum of roots is $-\sqrt{3}+\sqrt{3}=0=0$.
In the equation $a{{x}^{2}}+bx+c=0$, the product of the roots is given by $\dfrac{c}{a}$.
In this question the product of roots is $-\sqrt{3}\times \sqrt{3}=3=3$.
Hence, our answer is correct.
Note: We can also factorize with a different approach. We can use the identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ .So, we in our question we can write as ${{x}^{2}}-3=\left( x-\sqrt{3} \right)\left( x+\sqrt{3} \right)$.
We need to remember that there is a negative sign while verifying with the coefficients of the quadratic equation, the sum of the roots is equal to $\dfrac{-b}{a}$.
We need to factorize the quadratic equation and equate to zero to find the roots of the equation.
The roots itself are the zeros of the polynomial. In order to verify, we can use the property of the quadratic equation. In the equation $a{{x}^{2}}+bx+c=0$ , the sum of the roots is given by $\dfrac{-b}{a}$. In the equation $a{{x}^{2}}+bx+c=0$, the product of the roots is given by $\dfrac{c}{a}$.
Complete step-by-step solution:
We need to find the zeros of the above quadratic equation given above $p\left( x \right)={{x}^{2}}-3$.
Let’s understand by finding the zeros of the equation.
Zeros of the polynomial can be defined as the points where the polynomial becomes zero.
Here, we have a quadratic equation.
To find the zeros of the equation we need to factorize the equation.
As there is no middle term we can add and subtract the middle term with the coefficients of the square root of the constants.
Splitting the middle term, we get,
$\begin{align}
& p\left( x \right)={{x}^{2}}-3 \\
& ={{x}^{2}}+\sqrt{3}x-\sqrt{3}x-3
\end{align}$
Taking the value of x common from the first two terms and $\sqrt{3}$ from the next terms we get,
\[p\left( x \right)=x\left( x+\sqrt{3} \right)-\sqrt{3}\left( x+\sqrt{3} \right)\]
Taking $\left( x+\sqrt{3} \right)$ common we get,
$p\left( x \right)=\left( x+\sqrt{3} \right)\left( x-\sqrt{3} \right)$
We need to equate to zero, to find the points where the polynomial is zero.
Therefore, $\left( x+\sqrt{3} \right)\left( x-\sqrt{3} \right)=0$
This equation is satisfied only when anyone term is zero.
So, we have two points of x where the polynomial is zero.
The first point is $x+\sqrt{3}=0$ ,
$x=-\sqrt{3}$
The second point is $x-\sqrt{3}=0$ ,
$x=\sqrt{3}$
Hence, the two roots of the equation are $-\sqrt{3}$ and $\sqrt{3}$ .
In order to check this, we can use the property of the quadratic equation. In the equation $a{{x}^{2}}+bx+c=0$ , the sum of the roots is given by $\dfrac{-b}{a}$ . In this question the sum of roots is $-\sqrt{3}+\sqrt{3}=0=0$.
In the equation $a{{x}^{2}}+bx+c=0$, the product of the roots is given by $\dfrac{c}{a}$.
In this question the product of roots is $-\sqrt{3}\times \sqrt{3}=3=3$.
Hence, our answer is correct.
Note: We can also factorize with a different approach. We can use the identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ .So, we in our question we can write as ${{x}^{2}}-3=\left( x-\sqrt{3} \right)\left( x+\sqrt{3} \right)$.
We need to remember that there is a negative sign while verifying with the coefficients of the quadratic equation, the sum of the roots is equal to $\dfrac{-b}{a}$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE