Answer
Verified
494.4k+ views
Hint: To find the volume of largest cone that can be cut out of a cube whose edge is \[9cm\], take the maximum height of cone as the length of edge of cube, i.e., \[9cm\] and the radius of cone as half of the length of the edge of the cube. Use the formula for calculating the volume of the cone which is \[\dfrac{1}{3}\pi {{r}^{2}}h\].
We have to find the volume of the largest cone that can be cut out of a cube whose edge is \[9cm\]. To do so, we will find the maximum possible value of length and radius of the cone.
Let’s denote the height of the cone by \[h\] and radius of the cone by \[r\].
We observe that the maximum height of the cone can be equal to the length of the edge of the cube. Thus, we have \[h=9cm\].
Similarly, the maximum possible radius of the cone is half of the length of edge of the cube as we have to fit the entire cone inside the cube. Thus, we have \[r=\dfrac{9}{2}=4.5cm\].
We will now evaluate the volume of the cone.
We know that the volume of cone is \[\dfrac{1}{3}\pi {{r}^{2}}h\], where \[r\] denotes the radius of the cone and \[h\] denotes the height of the cone.
Substituting \[r=4.5cm,h=9cm\] in the above equation, we have the volume of cone \[=\dfrac{1}{3}\pi {{r}^{2}}h=\dfrac{1}{3}\left( 3.14 \right){{\left( 4.5 \right)}^{2}}\left( 9 \right)\].
Simplifying the above expression, we have the volume of cone \[=190.75c{{m}^{3}}\].
Hence, the volume of the largest right circular cone that can be fit in a cube of edge \[9cm\] is \[190.75c{{m}^{3}}\].
Note: Be careful about the units while calculating the volume of cones, otherwise we will get an incorrect answer. A right circular cone is a cone where the axis of the cone is the line meeting the vertex to the midpoint of the circular base.
We have to find the volume of the largest cone that can be cut out of a cube whose edge is \[9cm\]. To do so, we will find the maximum possible value of length and radius of the cone.
Let’s denote the height of the cone by \[h\] and radius of the cone by \[r\].
We observe that the maximum height of the cone can be equal to the length of the edge of the cube. Thus, we have \[h=9cm\].
Similarly, the maximum possible radius of the cone is half of the length of edge of the cube as we have to fit the entire cone inside the cube. Thus, we have \[r=\dfrac{9}{2}=4.5cm\].
We will now evaluate the volume of the cone.
We know that the volume of cone is \[\dfrac{1}{3}\pi {{r}^{2}}h\], where \[r\] denotes the radius of the cone and \[h\] denotes the height of the cone.
Substituting \[r=4.5cm,h=9cm\] in the above equation, we have the volume of cone \[=\dfrac{1}{3}\pi {{r}^{2}}h=\dfrac{1}{3}\left( 3.14 \right){{\left( 4.5 \right)}^{2}}\left( 9 \right)\].
Simplifying the above expression, we have the volume of cone \[=190.75c{{m}^{3}}\].
Hence, the volume of the largest right circular cone that can be fit in a cube of edge \[9cm\] is \[190.75c{{m}^{3}}\].
Note: Be careful about the units while calculating the volume of cones, otherwise we will get an incorrect answer. A right circular cone is a cone where the axis of the cone is the line meeting the vertex to the midpoint of the circular base.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE