
Find the values of each of the following:
${{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]$
Answer
513.3k+ views
Hint: We will apply the formula $\sin \left( x \right)=\sin \left( y \right)$ then $x=n\pi +{{\left( -1 \right)}^{n}}y$. Here n belongs to the integers. We will use this formula in order to find the value of the angle of sine.
Complete step-by-step answer:
First we will consider ${{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]...(i)$. We will substitute the value of ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=a$. By placing the inverse sin operation to the right side of the equal sign then we will have $\sin \left( a \right)=\dfrac{1}{2}$.
As we know that the value of $\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}$. Therefore, we have that $\sin \left( a \right)=\sin \left( \dfrac{\pi }{6} \right)$. The sine is positive in first and second quadrants. So, we will consider the sine in the first quadrant only due to the range of inverse sine which is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$. Therefore, we have that $a=\dfrac{\pi }{6}$. This is by the formula if we have $\sin \left( x \right)=\sin \left( y \right)$ then $x=n\pi +{{\left( -1 \right)}^{n}}y$. Here n belongs to the integers. As we already have ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=a$ so, we can write this expression as ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{6}$. Now, we will substitute this value in the equation (i). Thus, we have
$\begin{align}
& {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\cos \left( 2\times \dfrac{\pi }{6} \right) \right] \\
& \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\cos \left( \dfrac{\pi }{3} \right) \right]...(ii) \\
\end{align}$
Now as we know that the value of $\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}$. Therefore, after substituting the value in equation (ii) we will have
$\begin{align}
& {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\cos \left( \dfrac{\pi }{3} \right) \right] \\
& \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\times \dfrac{1}{2} \right] \\
& \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left( 1 \right) \\
\end{align}$
Now we will find the value of ${{\tan }^{-1}}\left( 1 \right)$. Since, the value of $\tan \left( \dfrac{\pi }{4} \right)=1$ so we will get
$\begin{align}
& {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left( 1 \right) \\
& \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4} \right) \right) \\
\end{align}$
Now we will apply the formula of ${{\tan }^{-1}}\left( \tan \left( x \right) \right)=x$ in the above expression. Therefore, we have
$\Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]=\dfrac{\pi }{4}$
And this is our required answer.
Hence, the value of the expression ${{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]=\dfrac{\pi }{4}$.
Note: We could have used an alternate method of solving ${{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]$.We will substitute the value of ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=a$. By placing the inverse sin operation to the right side of the equal sign then we will have $\sin \left( a \right)=\dfrac{1}{2}$. And here we could have used the trigonometric identity which is given by ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$ or, ${{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x$ . Therefore, we get
$\begin{align}
& {{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x \\
& \Rightarrow \dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{6} \right) \right) \\
\end{align}$
This is because the value of $\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}$. Therefore we could have got the desired result by this method also.
Complete step-by-step answer:
First we will consider ${{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]...(i)$. We will substitute the value of ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=a$. By placing the inverse sin operation to the right side of the equal sign then we will have $\sin \left( a \right)=\dfrac{1}{2}$.
As we know that the value of $\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}$. Therefore, we have that $\sin \left( a \right)=\sin \left( \dfrac{\pi }{6} \right)$. The sine is positive in first and second quadrants. So, we will consider the sine in the first quadrant only due to the range of inverse sine which is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$. Therefore, we have that $a=\dfrac{\pi }{6}$. This is by the formula if we have $\sin \left( x \right)=\sin \left( y \right)$ then $x=n\pi +{{\left( -1 \right)}^{n}}y$. Here n belongs to the integers. As we already have ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=a$ so, we can write this expression as ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{6}$. Now, we will substitute this value in the equation (i). Thus, we have
$\begin{align}
& {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\cos \left( 2\times \dfrac{\pi }{6} \right) \right] \\
& \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\cos \left( \dfrac{\pi }{3} \right) \right]...(ii) \\
\end{align}$
Now as we know that the value of $\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}$. Therefore, after substituting the value in equation (ii) we will have
$\begin{align}
& {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\cos \left( \dfrac{\pi }{3} \right) \right] \\
& \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\times \dfrac{1}{2} \right] \\
& \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left( 1 \right) \\
\end{align}$
Now we will find the value of ${{\tan }^{-1}}\left( 1 \right)$. Since, the value of $\tan \left( \dfrac{\pi }{4} \right)=1$ so we will get
$\begin{align}
& {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left( 1 \right) \\
& \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4} \right) \right) \\
\end{align}$
Now we will apply the formula of ${{\tan }^{-1}}\left( \tan \left( x \right) \right)=x$ in the above expression. Therefore, we have
$\Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]=\dfrac{\pi }{4}$
And this is our required answer.
Hence, the value of the expression ${{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]=\dfrac{\pi }{4}$.
Note: We could have used an alternate method of solving ${{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]$.We will substitute the value of ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=a$. By placing the inverse sin operation to the right side of the equal sign then we will have $\sin \left( a \right)=\dfrac{1}{2}$. And here we could have used the trigonometric identity which is given by ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$ or, ${{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x$ . Therefore, we get
$\begin{align}
& {{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x \\
& \Rightarrow \dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{6} \right) \right) \\
\end{align}$
This is because the value of $\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}$. Therefore we could have got the desired result by this method also.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
