
Find the values of each of the following:
${{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]$
Answer
609.9k+ views
Hint: We will apply the formula $\sin \left( x \right)=\sin \left( y \right)$ then $x=n\pi +{{\left( -1 \right)}^{n}}y$. Here n belongs to the integers. We will use this formula in order to find the value of the angle of sine.
Complete step-by-step answer:
First we will consider ${{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]...(i)$. We will substitute the value of ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=a$. By placing the inverse sin operation to the right side of the equal sign then we will have $\sin \left( a \right)=\dfrac{1}{2}$.
As we know that the value of $\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}$. Therefore, we have that $\sin \left( a \right)=\sin \left( \dfrac{\pi }{6} \right)$. The sine is positive in first and second quadrants. So, we will consider the sine in the first quadrant only due to the range of inverse sine which is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$. Therefore, we have that $a=\dfrac{\pi }{6}$. This is by the formula if we have $\sin \left( x \right)=\sin \left( y \right)$ then $x=n\pi +{{\left( -1 \right)}^{n}}y$. Here n belongs to the integers. As we already have ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=a$ so, we can write this expression as ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{6}$. Now, we will substitute this value in the equation (i). Thus, we have
$\begin{align}
& {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\cos \left( 2\times \dfrac{\pi }{6} \right) \right] \\
& \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\cos \left( \dfrac{\pi }{3} \right) \right]...(ii) \\
\end{align}$
Now as we know that the value of $\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}$. Therefore, after substituting the value in equation (ii) we will have
$\begin{align}
& {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\cos \left( \dfrac{\pi }{3} \right) \right] \\
& \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\times \dfrac{1}{2} \right] \\
& \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left( 1 \right) \\
\end{align}$
Now we will find the value of ${{\tan }^{-1}}\left( 1 \right)$. Since, the value of $\tan \left( \dfrac{\pi }{4} \right)=1$ so we will get
$\begin{align}
& {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left( 1 \right) \\
& \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4} \right) \right) \\
\end{align}$
Now we will apply the formula of ${{\tan }^{-1}}\left( \tan \left( x \right) \right)=x$ in the above expression. Therefore, we have
$\Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]=\dfrac{\pi }{4}$
And this is our required answer.
Hence, the value of the expression ${{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]=\dfrac{\pi }{4}$.
Note: We could have used an alternate method of solving ${{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]$.We will substitute the value of ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=a$. By placing the inverse sin operation to the right side of the equal sign then we will have $\sin \left( a \right)=\dfrac{1}{2}$. And here we could have used the trigonometric identity which is given by ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$ or, ${{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x$ . Therefore, we get
$\begin{align}
& {{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x \\
& \Rightarrow \dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{6} \right) \right) \\
\end{align}$
This is because the value of $\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}$. Therefore we could have got the desired result by this method also.
Complete step-by-step answer:
First we will consider ${{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]...(i)$. We will substitute the value of ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=a$. By placing the inverse sin operation to the right side of the equal sign then we will have $\sin \left( a \right)=\dfrac{1}{2}$.
As we know that the value of $\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}$. Therefore, we have that $\sin \left( a \right)=\sin \left( \dfrac{\pi }{6} \right)$. The sine is positive in first and second quadrants. So, we will consider the sine in the first quadrant only due to the range of inverse sine which is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$. Therefore, we have that $a=\dfrac{\pi }{6}$. This is by the formula if we have $\sin \left( x \right)=\sin \left( y \right)$ then $x=n\pi +{{\left( -1 \right)}^{n}}y$. Here n belongs to the integers. As we already have ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=a$ so, we can write this expression as ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{6}$. Now, we will substitute this value in the equation (i). Thus, we have
$\begin{align}
& {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\cos \left( 2\times \dfrac{\pi }{6} \right) \right] \\
& \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\cos \left( \dfrac{\pi }{3} \right) \right]...(ii) \\
\end{align}$
Now as we know that the value of $\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}$. Therefore, after substituting the value in equation (ii) we will have
$\begin{align}
& {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\cos \left( \dfrac{\pi }{3} \right) \right] \\
& \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left[ 2\times \dfrac{1}{2} \right] \\
& \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left( 1 \right) \\
\end{align}$
Now we will find the value of ${{\tan }^{-1}}\left( 1 \right)$. Since, the value of $\tan \left( \dfrac{\pi }{4} \right)=1$ so we will get
$\begin{align}
& {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left( 1 \right) \\
& \Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4} \right) \right) \\
\end{align}$
Now we will apply the formula of ${{\tan }^{-1}}\left( \tan \left( x \right) \right)=x$ in the above expression. Therefore, we have
$\Rightarrow {{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]=\dfrac{\pi }{4}$
And this is our required answer.
Hence, the value of the expression ${{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]=\dfrac{\pi }{4}$.
Note: We could have used an alternate method of solving ${{\tan }^{-1}}\left[ 2\cos \left( 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right) \right]$.We will substitute the value of ${{\sin }^{-1}}\left( \dfrac{1}{2} \right)=a$. By placing the inverse sin operation to the right side of the equal sign then we will have $\sin \left( a \right)=\dfrac{1}{2}$. And here we could have used the trigonometric identity which is given by ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$ or, ${{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x$ . Therefore, we get
$\begin{align}
& {{\cos }^{-1}}x=\dfrac{\pi }{2}-{{\sin }^{-1}}x \\
& \Rightarrow \dfrac{\pi }{2}-{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{2}-{{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{6} \right) \right) \\
\end{align}$
This is because the value of $\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}$. Therefore we could have got the desired result by this method also.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

