
Find the value r from the following combination ${}^8{C_r} - {}^7{C_3} = {}^7{C_2}$ .
Answer
605.1k+ views
Hint: In this question apply the property of combination, later on compare the values, so use these concepts to get the solution of the question.
Given equation is
${}^8{C_r} - {}^7{C_3} = {}^7{C_2}$
Above equation is also written as
${}^8{C_r} = {}^7{C_2} + {}^7{C_3}$…………….. (1)
Now we all know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ , so use this property in above equation we have,
${}^8{C_r} = \dfrac{{8!}}{{r!\left( {8 - r} \right)!}}$
${}^7{C_2} = \dfrac{{7!}}{{2!\left( {7 - 2} \right)!}} = \dfrac{{7!}}{{2! \times 5!}}$
${}^7{C_3} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}} = \dfrac{{7!}}{{3! \times 4!}}$
Therefore from equation (1) we have,
$\dfrac{{8!}}{{r!\left( {8 - r} \right)!}} = \dfrac{{7!}}{{2! \times 5!}} + \dfrac{{7!}}{{3! \times 4!}}$
$ \Rightarrow \dfrac{{8!}}{{r!\left( {8 - r} \right)!}} = \dfrac{{7!}}{{2! \times \left( {5 \times 4!} \right)}} + \dfrac{{7!}}{{\left( {3 \times 2!} \right) \times 4!}} = \dfrac{{7!}}{{2! \times 4!}}\left[ {\dfrac{1}{5} + \dfrac{1}{3}} \right] = \dfrac{{7!}}{{2! \times 4!}}\left[ {\dfrac{8}{{3 \times 5}}} \right] = \dfrac{{8 \times 7!}}{{\left( {3 \times 2!} \right) \times \left( {5 \times 4!} \right)}}$
Now we all know that $\left( {8 \times 7! = 8!} \right),\left( {3 \times 2! = 3!} \right),\left( {5 \times 4! = 5!} \right)$
$
\Rightarrow \dfrac{{8!}}{{r!\left( {8 - r} \right)!}} = \dfrac{{8!}}{{3! \times 5!}} \\
\Rightarrow \dfrac{{8!}}{{r!\left( {8 - r} \right)!}} = \dfrac{{8!}}{{3! \times \left( {8 - 3} \right)!}} \\
$
Now compare the denominator part of L.H.S and R.H.S as numerator is same we have,
$r = 3$.
So, this is the required value of r.
Note: In such types of questions the key concept we have to remember is that always recall the property of combination which is stated above, then using this property simplify the equation and then compare the denominator part of L.H.S and R.H.S as numerator is same, we will get the required value of r.
Given equation is
${}^8{C_r} - {}^7{C_3} = {}^7{C_2}$
Above equation is also written as
${}^8{C_r} = {}^7{C_2} + {}^7{C_3}$…………….. (1)
Now we all know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ , so use this property in above equation we have,
${}^8{C_r} = \dfrac{{8!}}{{r!\left( {8 - r} \right)!}}$
${}^7{C_2} = \dfrac{{7!}}{{2!\left( {7 - 2} \right)!}} = \dfrac{{7!}}{{2! \times 5!}}$
${}^7{C_3} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}} = \dfrac{{7!}}{{3! \times 4!}}$
Therefore from equation (1) we have,
$\dfrac{{8!}}{{r!\left( {8 - r} \right)!}} = \dfrac{{7!}}{{2! \times 5!}} + \dfrac{{7!}}{{3! \times 4!}}$
$ \Rightarrow \dfrac{{8!}}{{r!\left( {8 - r} \right)!}} = \dfrac{{7!}}{{2! \times \left( {5 \times 4!} \right)}} + \dfrac{{7!}}{{\left( {3 \times 2!} \right) \times 4!}} = \dfrac{{7!}}{{2! \times 4!}}\left[ {\dfrac{1}{5} + \dfrac{1}{3}} \right] = \dfrac{{7!}}{{2! \times 4!}}\left[ {\dfrac{8}{{3 \times 5}}} \right] = \dfrac{{8 \times 7!}}{{\left( {3 \times 2!} \right) \times \left( {5 \times 4!} \right)}}$
Now we all know that $\left( {8 \times 7! = 8!} \right),\left( {3 \times 2! = 3!} \right),\left( {5 \times 4! = 5!} \right)$
$
\Rightarrow \dfrac{{8!}}{{r!\left( {8 - r} \right)!}} = \dfrac{{8!}}{{3! \times 5!}} \\
\Rightarrow \dfrac{{8!}}{{r!\left( {8 - r} \right)!}} = \dfrac{{8!}}{{3! \times \left( {8 - 3} \right)!}} \\
$
Now compare the denominator part of L.H.S and R.H.S as numerator is same we have,
$r = 3$.
So, this is the required value of r.
Note: In such types of questions the key concept we have to remember is that always recall the property of combination which is stated above, then using this property simplify the equation and then compare the denominator part of L.H.S and R.H.S as numerator is same, we will get the required value of r.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

