 Questions & Answers    Question Answers

# Find the value of ${{y}_{n}}$, when $y={{e}^{x}}(3{{x}^{2}}-4)$, Find ${{y}_{n}}$.  Answer Verified
Hint: In this question first we will Select a term as $u$ and $v$. Differentiate it till you get zero by using Leibnitz theorem.

Complete step-by-step answer:
So to find ${{y}_{n}}$ means to find $\dfrac{{{d}^{n}}y}{d{{x}^{n}}}$,
So for nth derivative we know that we should use Leibnitz theorem,
The product rule is a formula used to find the derivatives of products of two or more functions. It may be stated as,
${{(f.g)}^{'}}={{f}^{'}}.g+f.{{g}^{'}}$
or in Leibnitz's notation,
$\dfrac{d(u.v)}{dx}=\dfrac{du}{dx}.v+u.\dfrac{dv}{dx}$
In different notation it can be written as,
$d(uv)=udv+vdu$
The product rule can be considered a special case of the chain rule for several variables.
So the chain rule is,
$\dfrac{d(ab)}{dx}=\dfrac{\partial (ab)}{\partial a}\dfrac{da}{dx}+\dfrac{\partial (ab)}{\partial b}\dfrac{db}{dx}$
So we have to use the Leibnitz theorem,
So Leibnitz Theorem provides a useful formula for computing the${{n}^{th}}$derivative of a product of two functions. This theorem (Leibnitz theorem) is also called a theorem for successive differentiation.
This theorem is used for finding the ${{n}^{th}}$ derivative of a product. The Leibnitz formula expresses the derivative on ${{n}^{th}}$order of the product of two functions.
If $y=u.v$ then $\dfrac{{{d}^{n}}}{d{{x}^{n}}}(u.v)=u{{v}_{n}}+{}^{n}{{c}_{1}}{{u}_{1}}{{v}_{n-1}}+{}^{n}{{c}_{2}}{{u}_{2}}{{v}_{n-2}}+.......+{}^{n}{{c}_{r}}{{u}_{r}}{{v}_{n-r}}+....+{{u}_{n}}{{v}_{{}}}$……(1)
The above theorem is Leibnitz theorem,
So Now Let us consider $u=3{{x}^{2}}-4$ and $v={{e}^{x}}$
Here now differentiating$u$for first derivative${{u}_{1}}$,then second derivative${{u}_{2}}$and then third derivative${{u}_{3}}$.
So we get the derivatives as,
So we get ${{u}_{1}},{{u}_{2}},{{u}_{3}}$,
So ${{u}_{1}}=6x$, ${{u}_{2}}=6$,${{u}_{3}}=0$…..(2)
Also differentiating for$v$, For first , second,${{n}^{th}}$derivatives , ${{(n-1)}^{th}}$derivatives, ${{(n-2)}^{nd}}$derivative,
So we get the derivatives as,
same for ${{v}_{1}}={{e}^{x}}$,${{v}_{2}}={{e}^{x}}$, ${{v}_{3}}={{e}^{x}}$ So${{v}_{n}}={{e}^{x}},{{v}_{n-1}}={{e}^{x}},{{v}_{n-2}}={{e}^{x}}$ ………(3)
Now we have to substitute (2) and (3) in (1), that is substituting in Leibnitz theorem,
We get,
$\Rightarrow$ $\dfrac{{{d}^{n}}}{d{{x}^{n}}}((3{{x}^{2}}-4){{e}^{x}})=(3{{x}^{2}}-4){{e}^{x}}+{}^{n}{{c}_{1}}6x{{e}^{x}}+{}^{n}{{c}_{2}}6{{e}^{x}}$
$\Rightarrow$ $\dfrac{{{d}^{n}}}{d{{x}^{n}}}((3{{x}^{2}}-4){{e}^{x}})=(3{{x}^{2}}-4){{e}^{x}}+n6x{{e}^{x}}+\dfrac{n(n-1)}{2}6{{e}^{x}}$………………(we know${}^{n}{{c}_{1}}=n$and ${}^{n}{{c}_{2}}=\dfrac{n(n-1)}{2}$)
So simplifying in simple manner we get,
\begin{align} & \dfrac{{{d}^{n}}}{d{{x}^{n}}}((3{{x}^{2}}-4){{e}^{x}})=(3{{x}^{2}}-4){{e}^{x}}+6nx{{e}^{x}}+3n(n-1){{e}^{x}} \\ & \dfrac{{{d}^{n}}}{d{{x}^{n}}}((3{{x}^{2}}-4){{e}^{x}})={{e}^{x}}((3{{x}^{2}}-4)+6nx+3n(n-1)) \\ \end{align}
As we want to find for${{n}^{th}}$ derivative, So we get the final answer as,
Hence ${{y}_{n}}={{e}^{x}}((3{{x}^{2}}-4)+6nx+3n(n-1))$

Note: Be careful using Leibnitz theorem. Use proper substitution of $u$ and $v$. Don’t be confused while applying the $u$ and $v$. While solving confusion occurs. Use the differentiation in the correct manner. Be thorough with ${}^{n}{{c}_{1}}=n$and more. Use proper substitution of$u$and $v$. Don’t jumble between ${{u}_{1}}=6x$,${{u}_{2}}=6$etc.
Bookmark added to your notes.
View Notes
How to Find The Median?  Determinant to Find the Area of a Triangle  How To Find Median?  How to Find Square Root  How to Find Cube Root?  How to Find Prime Numbers?  To Find the Surface Tension of Water by Capillary Rise Method  To Find the Weight of a Given Body Using Parallelogram Law of Vectors  How to Find Square Root of a Number  To Find Effective Length of Seconds Pendulum Using Graph  