
Find the value of x, if sin x, sin 2x, sin 3x are in A.P
A) $n\pi ,{\text{ }}n \in l$
B) $nx,{\text{ }}n \in l$
C) $2n\pi ,{\text{ }}n \in l$
D) $\left( {2n + 1} \right)\pi ,{\text{ }}n \in l$
Answer
606.3k+ views
Hint: First use the property of arithmetic progression to the given terms and obtain an equation using trigonometric identities. Solve them using trigonometric equation solutions.
Complete step-by-step answer:
Given that $\sin x$, $\sin 2x$, $\sin 3x$ are in arithmetic progression.
We know that if a,b and c are in arithmetic progression, then the successive terms have equal difference, that is,
$2{\text{b = a + c}}$
Using the above relation in the given problem, we get
$2\sin 2x = \sin x + \sin 3x{\text{ ---- (1)}}$
We know from trigonometric sum to product formula that
$\sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)$
Using the above formula in the RHS of equation $(1)$, we get,
$
2\sin 2x = \sin 3x + \sin x = 2\sin \left( {\dfrac{{3x + x}}{2}} \right)\cos \left( {\dfrac{{3x - x}}{2}} \right) \\
\Rightarrow 2\sin 2x = 2\sin \left( {2x} \right)\cos \left( x \right) \\
$
Rearranging the above obtained equation, we get
$2\sin \left( {2x} \right)\left( {1 - \cos x} \right) = 0$
$ \Rightarrow \sin \left( {2x} \right) = 0{\text{ ---- (2)}}$
Or $\left( {1 - \cos x} \right) = 0{\text{ ---- (3)}}$
Now we need to solve equations $(2)$ and $(3)$ and then obtain the common solution.
We know that the general solution of $\sin z = 0$ is $z = n\pi {\text{ , }}n \in l$ ,where $l$ denotes integers.
Using above in equation $(2)$,we get,
$
\sin \left( {2x} \right) = 0{\text{ }} \Rightarrow 2x = n\pi \\
\Rightarrow x = \dfrac{{n\pi }}{2}{\text{, }}n \in l{\text{ ---- (4)}} \\
$
Similarly, we know that the general solution of $\cos z = 1$ is $z = 2n\pi {\text{ , }}n \in l$,where $l$ denotes integers.
Using above in equation $(3)$,we get,
$
\cos \left( x \right) = 1{\text{ }} \Rightarrow x = 2n\pi \\
\Rightarrow x = 2n\pi ,n \in l{\text{ ---- (5)}} \\
$
The intersection of solutions $(4)$and $(5)$ is $x = 2n\pi {\text{, }}n \in l$, which satisfies both the equations.
Hence (C). $x = 2n\pi {\text{, }}n \in l$ is the correct answer.
Note: Properties of arithmetic progression and solutions of the trigonometric equations should be kept in mind while solving problems like above. The intersection of solutions should always be verified with the original equations.
Complete step-by-step answer:
Given that $\sin x$, $\sin 2x$, $\sin 3x$ are in arithmetic progression.
We know that if a,b and c are in arithmetic progression, then the successive terms have equal difference, that is,
$2{\text{b = a + c}}$
Using the above relation in the given problem, we get
$2\sin 2x = \sin x + \sin 3x{\text{ ---- (1)}}$
We know from trigonometric sum to product formula that
$\sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)$
Using the above formula in the RHS of equation $(1)$, we get,
$
2\sin 2x = \sin 3x + \sin x = 2\sin \left( {\dfrac{{3x + x}}{2}} \right)\cos \left( {\dfrac{{3x - x}}{2}} \right) \\
\Rightarrow 2\sin 2x = 2\sin \left( {2x} \right)\cos \left( x \right) \\
$
Rearranging the above obtained equation, we get
$2\sin \left( {2x} \right)\left( {1 - \cos x} \right) = 0$
$ \Rightarrow \sin \left( {2x} \right) = 0{\text{ ---- (2)}}$
Or $\left( {1 - \cos x} \right) = 0{\text{ ---- (3)}}$
Now we need to solve equations $(2)$ and $(3)$ and then obtain the common solution.
We know that the general solution of $\sin z = 0$ is $z = n\pi {\text{ , }}n \in l$ ,where $l$ denotes integers.
Using above in equation $(2)$,we get,
$
\sin \left( {2x} \right) = 0{\text{ }} \Rightarrow 2x = n\pi \\
\Rightarrow x = \dfrac{{n\pi }}{2}{\text{, }}n \in l{\text{ ---- (4)}} \\
$
Similarly, we know that the general solution of $\cos z = 1$ is $z = 2n\pi {\text{ , }}n \in l$,where $l$ denotes integers.
Using above in equation $(3)$,we get,
$
\cos \left( x \right) = 1{\text{ }} \Rightarrow x = 2n\pi \\
\Rightarrow x = 2n\pi ,n \in l{\text{ ---- (5)}} \\
$
The intersection of solutions $(4)$and $(5)$ is $x = 2n\pi {\text{, }}n \in l$, which satisfies both the equations.
Hence (C). $x = 2n\pi {\text{, }}n \in l$ is the correct answer.
Note: Properties of arithmetic progression and solutions of the trigonometric equations should be kept in mind while solving problems like above. The intersection of solutions should always be verified with the original equations.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

