Find the value of x, if sin x, sin 2x, sin 3x are in A.P
A) $n\pi ,{\text{ }}n \in l$
B) $nx,{\text{ }}n \in l$
C) $2n\pi ,{\text{ }}n \in l$
D) $\left( {2n + 1} \right)\pi ,{\text{ }}n \in l$
Answer
Verified
506.4k+ views
Hint: First use the property of arithmetic progression to the given terms and obtain an equation using trigonometric identities. Solve them using trigonometric equation solutions.
Complete step-by-step answer:
Given that $\sin x$, $\sin 2x$, $\sin 3x$ are in arithmetic progression.
We know that if a,b and c are in arithmetic progression, then the successive terms have equal difference, that is,
$2{\text{b = a + c}}$
Using the above relation in the given problem, we get
$2\sin 2x = \sin x + \sin 3x{\text{ ---- (1)}}$
We know from trigonometric sum to product formula that
$\sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)$
Using the above formula in the RHS of equation $(1)$, we get,
$
2\sin 2x = \sin 3x + \sin x = 2\sin \left( {\dfrac{{3x + x}}{2}} \right)\cos \left( {\dfrac{{3x - x}}{2}} \right) \\
\Rightarrow 2\sin 2x = 2\sin \left( {2x} \right)\cos \left( x \right) \\
$
Rearranging the above obtained equation, we get
$2\sin \left( {2x} \right)\left( {1 - \cos x} \right) = 0$
$ \Rightarrow \sin \left( {2x} \right) = 0{\text{ ---- (2)}}$
Or $\left( {1 - \cos x} \right) = 0{\text{ ---- (3)}}$
Now we need to solve equations $(2)$ and $(3)$ and then obtain the common solution.
We know that the general solution of $\sin z = 0$ is $z = n\pi {\text{ , }}n \in l$ ,where $l$ denotes integers.
Using above in equation $(2)$,we get,
$
\sin \left( {2x} \right) = 0{\text{ }} \Rightarrow 2x = n\pi \\
\Rightarrow x = \dfrac{{n\pi }}{2}{\text{, }}n \in l{\text{ ---- (4)}} \\
$
Similarly, we know that the general solution of $\cos z = 1$ is $z = 2n\pi {\text{ , }}n \in l$,where $l$ denotes integers.
Using above in equation $(3)$,we get,
$
\cos \left( x \right) = 1{\text{ }} \Rightarrow x = 2n\pi \\
\Rightarrow x = 2n\pi ,n \in l{\text{ ---- (5)}} \\
$
The intersection of solutions $(4)$and $(5)$ is $x = 2n\pi {\text{, }}n \in l$, which satisfies both the equations.
Hence (C). $x = 2n\pi {\text{, }}n \in l$ is the correct answer.
Note: Properties of arithmetic progression and solutions of the trigonometric equations should be kept in mind while solving problems like above. The intersection of solutions should always be verified with the original equations.
Complete step-by-step answer:
Given that $\sin x$, $\sin 2x$, $\sin 3x$ are in arithmetic progression.
We know that if a,b and c are in arithmetic progression, then the successive terms have equal difference, that is,
$2{\text{b = a + c}}$
Using the above relation in the given problem, we get
$2\sin 2x = \sin x + \sin 3x{\text{ ---- (1)}}$
We know from trigonometric sum to product formula that
$\sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)$
Using the above formula in the RHS of equation $(1)$, we get,
$
2\sin 2x = \sin 3x + \sin x = 2\sin \left( {\dfrac{{3x + x}}{2}} \right)\cos \left( {\dfrac{{3x - x}}{2}} \right) \\
\Rightarrow 2\sin 2x = 2\sin \left( {2x} \right)\cos \left( x \right) \\
$
Rearranging the above obtained equation, we get
$2\sin \left( {2x} \right)\left( {1 - \cos x} \right) = 0$
$ \Rightarrow \sin \left( {2x} \right) = 0{\text{ ---- (2)}}$
Or $\left( {1 - \cos x} \right) = 0{\text{ ---- (3)}}$
Now we need to solve equations $(2)$ and $(3)$ and then obtain the common solution.
We know that the general solution of $\sin z = 0$ is $z = n\pi {\text{ , }}n \in l$ ,where $l$ denotes integers.
Using above in equation $(2)$,we get,
$
\sin \left( {2x} \right) = 0{\text{ }} \Rightarrow 2x = n\pi \\
\Rightarrow x = \dfrac{{n\pi }}{2}{\text{, }}n \in l{\text{ ---- (4)}} \\
$
Similarly, we know that the general solution of $\cos z = 1$ is $z = 2n\pi {\text{ , }}n \in l$,where $l$ denotes integers.
Using above in equation $(3)$,we get,
$
\cos \left( x \right) = 1{\text{ }} \Rightarrow x = 2n\pi \\
\Rightarrow x = 2n\pi ,n \in l{\text{ ---- (5)}} \\
$
The intersection of solutions $(4)$and $(5)$ is $x = 2n\pi {\text{, }}n \in l$, which satisfies both the equations.
Hence (C). $x = 2n\pi {\text{, }}n \in l$ is the correct answer.
Note: Properties of arithmetic progression and solutions of the trigonometric equations should be kept in mind while solving problems like above. The intersection of solutions should always be verified with the original equations.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE