
Find the value of \[x+y\] from the following equation
\[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right]\]
Answer
512.4k+ views
Hint: In this question, We are given with a matrix equation
\[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right]\]. In order to find the value of \[x+y\], we have to first calculate the value of \[x\] and \[y\]. In order to find \[x\] and \[y\], we have to first multiply value of \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\]
by multiplying each element of the matrix with 2. Then we have to add the resultant matrix to
\[\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]\] by using component wise addition. Finally we have to equate each of term of the resultant matrix with the corresponding terms of \[\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right]\] and form equations in \[x\] and \[y\] and solve those equations to get the desired value of \[x\]and \[y\].Then we will add both the value to get
\[x+y\].
Complete step-by-step answer:
We are given with a matrix equation \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right].........(1)\].
Now in order to find the value of \[x+y\], we will first have to first calculate the value of \[x\]and \[y\].
For that we will first calculate the matrix \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\] by multiplying each element of the matrix
\[\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\] with 2.
Then we will get
\[\begin{align}
& 2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]=\left[ \begin{matrix}
2x & 2\times 5 \\
2\times 7 & 2\left( y-3 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2x & 10 \\
14 & 2y-6 \\
\end{matrix} \right]
\end{align}\]
Now on adding the matrix value of \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\] to the matrix \[\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]\] by component wise addition of the elements of the matrices, we will get
\[\begin{align}
& 2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
2x & 10 \\
14 & 2y-6 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2x+3 & 10-4 \\
14+1 & 2y-6+2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2x+3 & 6 \\
15 & 2y-4 \\
\end{matrix} \right]
\end{align}\]
Now we will substitute that value of \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]\]in the matrix equation (1), then we get
\[\left[ \begin{matrix}
2x+3 & 6 \\
15 & 2y-4 \\
\end{matrix} \right]=\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right]\]
Equation each elements of the two matrices in the right hand side and the left hand side of the above matrix equation, we get
\[2x+3=7.............(2)\] and
\[2y-4=14.............(3)\]
On solving equation (2) to find the value of \[x\], we will get
\[\begin{align}
& 2x=7-3 \\
& \Rightarrow 2x=4 \\
& \Rightarrow x=\dfrac{4}{2} \\
& \Rightarrow x=2 \\
\end{align}\]
Now On solving equation (3) to find the value of \[y\], we will get
\[\begin{align}
& 2y-4=14 \\
& \Rightarrow 2y=14+4 \\
& \Rightarrow 2y=18 \\
& \Rightarrow y=\dfrac{18}{2} \\
& \Rightarrow y=9 \\
\end{align}\]
Thus we have \[x=2\] and \[y=9\].
On adding the values \[x=2\] and \[y=9\] to get \[x+y\], we get
\[\begin{align}
& x+y=2+9 \\
& =11
\end{align}\]
Thus we get that the value of \[x+y\] is equal to 11.
Note: In this problem, while calculating the product \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\], 2 will be multiplied by each and every element of the matrix and not just the element in the first row and first column.
\[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right]\]. In order to find the value of \[x+y\], we have to first calculate the value of \[x\] and \[y\]. In order to find \[x\] and \[y\], we have to first multiply value of \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\]
by multiplying each element of the matrix with 2. Then we have to add the resultant matrix to
\[\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]\] by using component wise addition. Finally we have to equate each of term of the resultant matrix with the corresponding terms of \[\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right]\] and form equations in \[x\] and \[y\] and solve those equations to get the desired value of \[x\]and \[y\].Then we will add both the value to get
\[x+y\].
Complete step-by-step answer:
We are given with a matrix equation \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right].........(1)\].
Now in order to find the value of \[x+y\], we will first have to first calculate the value of \[x\]and \[y\].
For that we will first calculate the matrix \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\] by multiplying each element of the matrix
\[\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\] with 2.
Then we will get
\[\begin{align}
& 2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]=\left[ \begin{matrix}
2x & 2\times 5 \\
2\times 7 & 2\left( y-3 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2x & 10 \\
14 & 2y-6 \\
\end{matrix} \right]
\end{align}\]
Now on adding the matrix value of \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\] to the matrix \[\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]\] by component wise addition of the elements of the matrices, we will get
\[\begin{align}
& 2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
2x & 10 \\
14 & 2y-6 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2x+3 & 10-4 \\
14+1 & 2y-6+2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2x+3 & 6 \\
15 & 2y-4 \\
\end{matrix} \right]
\end{align}\]
Now we will substitute that value of \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]\]in the matrix equation (1), then we get
\[\left[ \begin{matrix}
2x+3 & 6 \\
15 & 2y-4 \\
\end{matrix} \right]=\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right]\]
Equation each elements of the two matrices in the right hand side and the left hand side of the above matrix equation, we get
\[2x+3=7.............(2)\] and
\[2y-4=14.............(3)\]
On solving equation (2) to find the value of \[x\], we will get
\[\begin{align}
& 2x=7-3 \\
& \Rightarrow 2x=4 \\
& \Rightarrow x=\dfrac{4}{2} \\
& \Rightarrow x=2 \\
\end{align}\]
Now On solving equation (3) to find the value of \[y\], we will get
\[\begin{align}
& 2y-4=14 \\
& \Rightarrow 2y=14+4 \\
& \Rightarrow 2y=18 \\
& \Rightarrow y=\dfrac{18}{2} \\
& \Rightarrow y=9 \\
\end{align}\]
Thus we have \[x=2\] and \[y=9\].
On adding the values \[x=2\] and \[y=9\] to get \[x+y\], we get
\[\begin{align}
& x+y=2+9 \\
& =11
\end{align}\]
Thus we get that the value of \[x+y\] is equal to 11.
Note: In this problem, while calculating the product \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\], 2 will be multiplied by each and every element of the matrix and not just the element in the first row and first column.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
