
Find the value of \[x+y\] from the following equation
\[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right]\]
Answer
578.1k+ views
Hint: In this question, We are given with a matrix equation
\[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right]\]. In order to find the value of \[x+y\], we have to first calculate the value of \[x\] and \[y\]. In order to find \[x\] and \[y\], we have to first multiply value of \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\]
by multiplying each element of the matrix with 2. Then we have to add the resultant matrix to
\[\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]\] by using component wise addition. Finally we have to equate each of term of the resultant matrix with the corresponding terms of \[\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right]\] and form equations in \[x\] and \[y\] and solve those equations to get the desired value of \[x\]and \[y\].Then we will add both the value to get
\[x+y\].
Complete step-by-step answer:
We are given with a matrix equation \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right].........(1)\].
Now in order to find the value of \[x+y\], we will first have to first calculate the value of \[x\]and \[y\].
For that we will first calculate the matrix \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\] by multiplying each element of the matrix
\[\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\] with 2.
Then we will get
\[\begin{align}
& 2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]=\left[ \begin{matrix}
2x & 2\times 5 \\
2\times 7 & 2\left( y-3 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2x & 10 \\
14 & 2y-6 \\
\end{matrix} \right]
\end{align}\]
Now on adding the matrix value of \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\] to the matrix \[\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]\] by component wise addition of the elements of the matrices, we will get
\[\begin{align}
& 2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
2x & 10 \\
14 & 2y-6 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2x+3 & 10-4 \\
14+1 & 2y-6+2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2x+3 & 6 \\
15 & 2y-4 \\
\end{matrix} \right]
\end{align}\]
Now we will substitute that value of \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]\]in the matrix equation (1), then we get
\[\left[ \begin{matrix}
2x+3 & 6 \\
15 & 2y-4 \\
\end{matrix} \right]=\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right]\]
Equation each elements of the two matrices in the right hand side and the left hand side of the above matrix equation, we get
\[2x+3=7.............(2)\] and
\[2y-4=14.............(3)\]
On solving equation (2) to find the value of \[x\], we will get
\[\begin{align}
& 2x=7-3 \\
& \Rightarrow 2x=4 \\
& \Rightarrow x=\dfrac{4}{2} \\
& \Rightarrow x=2 \\
\end{align}\]
Now On solving equation (3) to find the value of \[y\], we will get
\[\begin{align}
& 2y-4=14 \\
& \Rightarrow 2y=14+4 \\
& \Rightarrow 2y=18 \\
& \Rightarrow y=\dfrac{18}{2} \\
& \Rightarrow y=9 \\
\end{align}\]
Thus we have \[x=2\] and \[y=9\].
On adding the values \[x=2\] and \[y=9\] to get \[x+y\], we get
\[\begin{align}
& x+y=2+9 \\
& =11
\end{align}\]
Thus we get that the value of \[x+y\] is equal to 11.
Note: In this problem, while calculating the product \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\], 2 will be multiplied by each and every element of the matrix and not just the element in the first row and first column.
\[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right]\]. In order to find the value of \[x+y\], we have to first calculate the value of \[x\] and \[y\]. In order to find \[x\] and \[y\], we have to first multiply value of \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\]
by multiplying each element of the matrix with 2. Then we have to add the resultant matrix to
\[\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]\] by using component wise addition. Finally we have to equate each of term of the resultant matrix with the corresponding terms of \[\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right]\] and form equations in \[x\] and \[y\] and solve those equations to get the desired value of \[x\]and \[y\].Then we will add both the value to get
\[x+y\].
Complete step-by-step answer:
We are given with a matrix equation \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right].........(1)\].
Now in order to find the value of \[x+y\], we will first have to first calculate the value of \[x\]and \[y\].
For that we will first calculate the matrix \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\] by multiplying each element of the matrix
\[\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\] with 2.
Then we will get
\[\begin{align}
& 2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]=\left[ \begin{matrix}
2x & 2\times 5 \\
2\times 7 & 2\left( y-3 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2x & 10 \\
14 & 2y-6 \\
\end{matrix} \right]
\end{align}\]
Now on adding the matrix value of \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\] to the matrix \[\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]\] by component wise addition of the elements of the matrices, we will get
\[\begin{align}
& 2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
2x & 10 \\
14 & 2y-6 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2x+3 & 10-4 \\
14+1 & 2y-6+2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2x+3 & 6 \\
15 & 2y-4 \\
\end{matrix} \right]
\end{align}\]
Now we will substitute that value of \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]+\left[ \begin{matrix}
3 & -4 \\
1 & 2 \\
\end{matrix} \right]\]in the matrix equation (1), then we get
\[\left[ \begin{matrix}
2x+3 & 6 \\
15 & 2y-4 \\
\end{matrix} \right]=\left[ \begin{matrix}
7 & 6 \\
15 & 14 \\
\end{matrix} \right]\]
Equation each elements of the two matrices in the right hand side and the left hand side of the above matrix equation, we get
\[2x+3=7.............(2)\] and
\[2y-4=14.............(3)\]
On solving equation (2) to find the value of \[x\], we will get
\[\begin{align}
& 2x=7-3 \\
& \Rightarrow 2x=4 \\
& \Rightarrow x=\dfrac{4}{2} \\
& \Rightarrow x=2 \\
\end{align}\]
Now On solving equation (3) to find the value of \[y\], we will get
\[\begin{align}
& 2y-4=14 \\
& \Rightarrow 2y=14+4 \\
& \Rightarrow 2y=18 \\
& \Rightarrow y=\dfrac{18}{2} \\
& \Rightarrow y=9 \\
\end{align}\]
Thus we have \[x=2\] and \[y=9\].
On adding the values \[x=2\] and \[y=9\] to get \[x+y\], we get
\[\begin{align}
& x+y=2+9 \\
& =11
\end{align}\]
Thus we get that the value of \[x+y\] is equal to 11.
Note: In this problem, while calculating the product \[2\left[ \begin{matrix}
x & 5 \\
7 & y-3 \\
\end{matrix} \right]\], 2 will be multiplied by each and every element of the matrix and not just the element in the first row and first column.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

