Answer
Verified
494.1k+ views
Hint: First of all square both sides of the given equation and convert the whole equation in terms of \[\sin \theta \] and find the value of \[\sin \theta \]. Then if \[\sin \theta =\sin \alpha \], then \[\theta =n\pi +{{\left( -1 \right)}^{n}{\alpha }}\] where \[\alpha \in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\] and \[n\in I\]. Then choose the acute \[\theta \] among all.
Complete step-by-step answer:
Here, we have to find the values of \[\theta \] if \[\sin \theta =\cos \theta \] given that \[\theta \] is acute. First of all, let us consider the equation given in the question, \[\sin \theta =\cos \theta \]
By squaring both sides of the above equation, we get
\[{{\sin }^{2}}\theta ={{\cos }^{2}}\theta \]
Now, we know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] or \[{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \]. By substituting the value of \[{{\cos }^{2}}\theta \] in terms of \[{{\sin }^{2}}\theta \] in the above equation, we get,
\[{{\sin }^{2}}\theta =1-{{\sin }^{2}}\theta \]
By adding \[{{\sin }^{2}}\theta \] on both sides of the above equation, we get,
\[{{\sin }^{2}}\theta +{{\sin }^{2}}\theta =1\]
Or, \[2{{\sin }^{2}}\theta =1\]
By dividing 2 on both sides of the above equation, we get,
\[\Rightarrow \dfrac{2{{\sin }^{2}}\theta }{2}=\dfrac{1}{2}\]
By canceling the like terms in LHS of the above equation, we get,
\[\Rightarrow {{\sin }^{2}}\theta =\dfrac{1}{2}\]
By taking square root on both sides of the above equation, we get,
\[\sqrt{{{\sin }^{2}}\theta }=\sqrt{\dfrac{1}{2}}\]
We know that \[\sqrt{{{a}^{2}}}=\pm a\] and \[\sqrt{1}=1\]. By applying these in the above equation, we get,
\[\sin \theta =\pm \dfrac{1}{\sqrt{2}}\]
Since we are given that \[\theta \] is acute, so \[\sin \theta >0\].
Therefore, we take \[\sin \theta =\dfrac{1}{\sqrt{2}}\].
We know that \[\sin {{45}^{o}}=\dfrac{1}{\sqrt{2}}\]. So by substituting the value of \[\dfrac{1}{\sqrt{2}}\] in terms of sine in the above equation, we get,
\[\Rightarrow \sin \theta =\sin {{45}^{o}}=\sin \left( 45\times \dfrac{\pi }{180} \right)=\sin \dfrac{\pi }{4}\]
We know that if \[\sin \theta =\sin \alpha \], then
\[\theta =n\pi +{{\left( -1 \right)}^{n}{\alpha }},\alpha \in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\text{ and }n\in I\]
By applying this in the above equation, we get,
\[\theta =n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}\]
By substituting n = 0, we get
\[\theta =0.\left( \pi \right)+{{\left( -1 \right)}^{0}}\dfrac{\pi }{4}\]
We get, \[\theta =\dfrac{\pi }{4}\]
By substituting n = 1, we get
\[\theta =\pi +{{\left( -1 \right)}^{1}}\dfrac{\pi }{4}\]
\[=\pi -\dfrac{\pi }{4}\]
We get, \[\theta =\dfrac{3\pi }{4}\]
By substituting n = 2, we get,
\[\theta =3\pi +{{\left( -1 \right)}^{2}}\dfrac{\pi }{4}\]
\[=3\pi +\dfrac{\pi }{4}\]
We get, \[\theta =\dfrac{13\pi }{4}\]
So, we get the value of \[\theta \] as \[\dfrac{\pi }{4},\dfrac{3\pi }{4},\dfrac{13\pi }{4}.....\text{so on}\]
But in the question, we are given that \[\theta \] must be acute that means \[0<\theta <\dfrac{\pi }{2}\]. So, only one value of \[\theta \] i.e. \[\theta =\dfrac{\pi }{4}\] is acceptable. Also, for \[\theta =\dfrac{\pi }{4}\], we get \[\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\].
So, we get \[\theta =\dfrac{\pi }{4}={{45}^{o}}\].
Note: Some students often make this mistake of getting the result \[\theta =\alpha \] initially by just looking at \[\sin \theta =\sin \alpha \]. But they must note that \[\theta =\alpha \] is not the only result but it is one of the results. The general value of \[\theta =n\pi +{{\left( -1 \right)}^{n}{\alpha }}\] where \[\alpha \in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\] and \[n\in I\] and there would be infinitely many values of \[\theta \] for giving \[\alpha \] not just \[\theta =\alpha \]. Also, students must check the value of \[\theta \] by substituting it in the given equation that is \[\sin \theta =\cos \theta \] and then only answer.
Complete step-by-step answer:
Here, we have to find the values of \[\theta \] if \[\sin \theta =\cos \theta \] given that \[\theta \] is acute. First of all, let us consider the equation given in the question, \[\sin \theta =\cos \theta \]
By squaring both sides of the above equation, we get
\[{{\sin }^{2}}\theta ={{\cos }^{2}}\theta \]
Now, we know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] or \[{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \]. By substituting the value of \[{{\cos }^{2}}\theta \] in terms of \[{{\sin }^{2}}\theta \] in the above equation, we get,
\[{{\sin }^{2}}\theta =1-{{\sin }^{2}}\theta \]
By adding \[{{\sin }^{2}}\theta \] on both sides of the above equation, we get,
\[{{\sin }^{2}}\theta +{{\sin }^{2}}\theta =1\]
Or, \[2{{\sin }^{2}}\theta =1\]
By dividing 2 on both sides of the above equation, we get,
\[\Rightarrow \dfrac{2{{\sin }^{2}}\theta }{2}=\dfrac{1}{2}\]
By canceling the like terms in LHS of the above equation, we get,
\[\Rightarrow {{\sin }^{2}}\theta =\dfrac{1}{2}\]
By taking square root on both sides of the above equation, we get,
\[\sqrt{{{\sin }^{2}}\theta }=\sqrt{\dfrac{1}{2}}\]
We know that \[\sqrt{{{a}^{2}}}=\pm a\] and \[\sqrt{1}=1\]. By applying these in the above equation, we get,
\[\sin \theta =\pm \dfrac{1}{\sqrt{2}}\]
Since we are given that \[\theta \] is acute, so \[\sin \theta >0\].
Therefore, we take \[\sin \theta =\dfrac{1}{\sqrt{2}}\].
We know that \[\sin {{45}^{o}}=\dfrac{1}{\sqrt{2}}\]. So by substituting the value of \[\dfrac{1}{\sqrt{2}}\] in terms of sine in the above equation, we get,
\[\Rightarrow \sin \theta =\sin {{45}^{o}}=\sin \left( 45\times \dfrac{\pi }{180} \right)=\sin \dfrac{\pi }{4}\]
We know that if \[\sin \theta =\sin \alpha \], then
\[\theta =n\pi +{{\left( -1 \right)}^{n}{\alpha }},\alpha \in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\text{ and }n\in I\]
By applying this in the above equation, we get,
\[\theta =n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}\]
By substituting n = 0, we get
\[\theta =0.\left( \pi \right)+{{\left( -1 \right)}^{0}}\dfrac{\pi }{4}\]
We get, \[\theta =\dfrac{\pi }{4}\]
By substituting n = 1, we get
\[\theta =\pi +{{\left( -1 \right)}^{1}}\dfrac{\pi }{4}\]
\[=\pi -\dfrac{\pi }{4}\]
We get, \[\theta =\dfrac{3\pi }{4}\]
By substituting n = 2, we get,
\[\theta =3\pi +{{\left( -1 \right)}^{2}}\dfrac{\pi }{4}\]
\[=3\pi +\dfrac{\pi }{4}\]
We get, \[\theta =\dfrac{13\pi }{4}\]
So, we get the value of \[\theta \] as \[\dfrac{\pi }{4},\dfrac{3\pi }{4},\dfrac{13\pi }{4}.....\text{so on}\]
But in the question, we are given that \[\theta \] must be acute that means \[0<\theta <\dfrac{\pi }{2}\]. So, only one value of \[\theta \] i.e. \[\theta =\dfrac{\pi }{4}\] is acceptable. Also, for \[\theta =\dfrac{\pi }{4}\], we get \[\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\].
So, we get \[\theta =\dfrac{\pi }{4}={{45}^{o}}\].
Note: Some students often make this mistake of getting the result \[\theta =\alpha \] initially by just looking at \[\sin \theta =\sin \alpha \]. But they must note that \[\theta =\alpha \] is not the only result but it is one of the results. The general value of \[\theta =n\pi +{{\left( -1 \right)}^{n}{\alpha }}\] where \[\alpha \in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\] and \[n\in I\] and there would be infinitely many values of \[\theta \] for giving \[\alpha \] not just \[\theta =\alpha \]. Also, students must check the value of \[\theta \] by substituting it in the given equation that is \[\sin \theta =\cos \theta \] and then only answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it