# Find the value of the series given below.

\[2 + \dfrac{5}{{2!.3}} + \dfrac{{5.7}}{{3!{{.3}^2}}} + \dfrac{{5.7.9}}{{4!{{.3}^3}}} + .......\]

Last updated date: 19th Mar 2023

•

Total views: 307.8k

•

Views today: 3.87k

Answer

Verified

307.8k+ views

Hint:- Use the expansion of ${(1 + x)^n}$, where n is negative.

As, we are given with the series

$ \Rightarrow y = 2 + \dfrac{5}{{2!.3}} + \dfrac{{5.7}}{{3!{{.3}^2}}} + \dfrac{{5.7.9}}{{4!{{.3}^3}}} + ......$ (1)

So, the series at equation 1 can be written as,

$ \Rightarrow y = 1 + 1 + \dfrac{5}{{2!.3}} + \dfrac{{5.7}}{{3!{{.3}^2}}} + \dfrac{{5.7.9}}{{4!{{.3}^3}}} + ......{\text{ }}$ (2)

Now, we know that when we had to find the value of any typical series,

Then we try to manipulate the series into the expansion of a known function.

So, we had to manipulate the series at equation 2.

Above series can be manipulated as,

$ \Rightarrow y = 1 + \dfrac{3}{2}.\dfrac{2}{3} + \dfrac{{\dfrac{3}{2}.\dfrac{5}{2}}}{{2!}}.\dfrac{{{2^2}}}{{{3^2}}} + \dfrac{{\dfrac{3}{2}.\dfrac{5}{2}.\dfrac{7}{2}}}{{3!}}.\dfrac{{{2^3}}}{{{3^3}}} + \dfrac{{\dfrac{3}{2}.\dfrac{5}{2}.\dfrac{7}{2}.\dfrac{9}{2}}}{{4!}}.\dfrac{{{2^4}}}{{{3^4}}} + ......$ (3)

Now, as we know that the expansion of ${\left( {1 + x} \right)^n}$, where n is negative is,

$ \Rightarrow {(1 + x)^n} = 1 + \dfrac{n}{{1!}}x + \dfrac{{n(n - 1)}}{{2!}}{x^2} + \dfrac{{n(n - 1)(n - 2)}}{{3!}}{x^3} + ....$

As, we can see clearly that in the expansion of ${(1 + x)^n}$,

$ \Rightarrow $If we put $x = \dfrac{{ - 2}}{3}$ and ${\text{ }}n = \dfrac{{ - 3}}{2}$. Then it becomes the series given in equation 3.

$ \Rightarrow $So, series given in equation 3 is the expansion of ${\left( {1 - \dfrac{2}{3}} \right)^{\dfrac{{ - 3}}{2}}} = {\left( {\dfrac{1}{3}} \right)^{\dfrac{{ - 3}}{2}}} = {\left( 3 \right)^{\dfrac{3}{2}}} = 3\sqrt 3 $.

$ \Rightarrow $So, $y = 3\sqrt 3 $

$ \Rightarrow $Hence, the value of the given series will be ${\text{3}}\sqrt 3 $.

Note:- Whenever we came up with this type of problem then try to

manipulate the series into the expansion of a known function and then we can

the series in terms of that function. As this will be the easiest and efficient way

to find the solution to the problem.

As, we are given with the series

$ \Rightarrow y = 2 + \dfrac{5}{{2!.3}} + \dfrac{{5.7}}{{3!{{.3}^2}}} + \dfrac{{5.7.9}}{{4!{{.3}^3}}} + ......$ (1)

So, the series at equation 1 can be written as,

$ \Rightarrow y = 1 + 1 + \dfrac{5}{{2!.3}} + \dfrac{{5.7}}{{3!{{.3}^2}}} + \dfrac{{5.7.9}}{{4!{{.3}^3}}} + ......{\text{ }}$ (2)

Now, we know that when we had to find the value of any typical series,

Then we try to manipulate the series into the expansion of a known function.

So, we had to manipulate the series at equation 2.

Above series can be manipulated as,

$ \Rightarrow y = 1 + \dfrac{3}{2}.\dfrac{2}{3} + \dfrac{{\dfrac{3}{2}.\dfrac{5}{2}}}{{2!}}.\dfrac{{{2^2}}}{{{3^2}}} + \dfrac{{\dfrac{3}{2}.\dfrac{5}{2}.\dfrac{7}{2}}}{{3!}}.\dfrac{{{2^3}}}{{{3^3}}} + \dfrac{{\dfrac{3}{2}.\dfrac{5}{2}.\dfrac{7}{2}.\dfrac{9}{2}}}{{4!}}.\dfrac{{{2^4}}}{{{3^4}}} + ......$ (3)

Now, as we know that the expansion of ${\left( {1 + x} \right)^n}$, where n is negative is,

$ \Rightarrow {(1 + x)^n} = 1 + \dfrac{n}{{1!}}x + \dfrac{{n(n - 1)}}{{2!}}{x^2} + \dfrac{{n(n - 1)(n - 2)}}{{3!}}{x^3} + ....$

As, we can see clearly that in the expansion of ${(1 + x)^n}$,

$ \Rightarrow $If we put $x = \dfrac{{ - 2}}{3}$ and ${\text{ }}n = \dfrac{{ - 3}}{2}$. Then it becomes the series given in equation 3.

$ \Rightarrow $So, series given in equation 3 is the expansion of ${\left( {1 - \dfrac{2}{3}} \right)^{\dfrac{{ - 3}}{2}}} = {\left( {\dfrac{1}{3}} \right)^{\dfrac{{ - 3}}{2}}} = {\left( 3 \right)^{\dfrac{3}{2}}} = 3\sqrt 3 $.

$ \Rightarrow $So, $y = 3\sqrt 3 $

$ \Rightarrow $Hence, the value of the given series will be ${\text{3}}\sqrt 3 $.

Note:- Whenever we came up with this type of problem then try to

manipulate the series into the expansion of a known function and then we can

the series in terms of that function. As this will be the easiest and efficient way

to find the solution to the problem.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE