Find the value of the limit \[\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{4n}{\dfrac{\sqrt{n}}{\sqrt{r}{{(3\sqrt{r}+4\sqrt{n})}^{2}}}}\] is equal to-A) \[\dfrac{1}{35}\] B) \[\dfrac{1}{14}\] C) \[\dfrac{1}{10}\] D) \[\dfrac{1}{5}\]
Answer
364.8k+ views
Hint: Try to convert the sum into integral using the idea that integral is a limit of a sum.
Note: Students have to be careful when writing the \[{{k}^{th}}\] term of the summation and its limits. Also, when converting the limit to the integral one should be careful. Students can use their own methods i.e. any other substitution when solving the integral. They may use either the lower Reimann sum or the upper Reimann sum, in both cases the answer will be the same.
Complete answer:
We can see that the \[{{r}^{th}}\] term of the sum is written as \[\dfrac{\sqrt{n}}{\sqrt{r}{{(3\sqrt{r}+4\sqrt{n})}^{2}}}\]
Therefore, multiplying by \[\dfrac{1}{\sqrt{n}}\] from both numerator and denominator we rewrite our equation as,
= \[\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{4n}{\dfrac{1}{\sqrt{\dfrac{r}{n}}{{(3\sqrt{\dfrac{r}{n}}+4)}^{2}}}}\dfrac{1}{n}\]
This limit can now be replaced by an integral as \[\dfrac{1}{n}=dx\] and \[\dfrac{r}{n}=x\].
The upper and lower limits of the integral can be found by evaluating the limit of \[\dfrac{r}{n}\] as \[r\] tends to upper and lower bounds of our summation, which in our case are \[0\] (as lower bound) and \[1\] as upper bound. Every limit of the form
\[\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=an}^{bn}{\dfrac{1}{n}f\left( \dfrac{r}{n} \right)}\] can be converted to the integral \[\int\limits_{a}^{b}{f(x)}dx\]. The summation is known as the Reimann sum of the integral. It helps to convert such infinite sums into an integral.
So,
= \[\int\limits_{0}^{1}{\dfrac{1}{\sqrt{x}{{\left( 3\sqrt{x}+4 \right)}^{2}}}}dx\]
For evaluating this integral substitute\[\sqrt{x}=t\]. So \[dt=\dfrac{1}{2\sqrt{x}}dx\]. Upper bound becomes \[1\] and lower bound becomes \[0\] (which remain the same in our case as the substitution was \[\sqrt{x}\] as \[t\], but may change if it would have been something else)
= \[\int\limits_{0}^{1}{\dfrac{2}{{{\left( 3t+4 \right)}^{2}}}}dt\]
= \[\left[ \dfrac{-2}{3\left( 3t+4 \right)} \right]_{0}^{1}\]
= \[\left( \dfrac{-2}{21} \right)-\left( \dfrac{-2}{12} \right)\]
=\[\dfrac{1}{14}\]
So, the value of the limit is option B) \[\dfrac{1}{14}\]
Last updated date: 03rd Oct 2023
•
Total views: 364.8k
•
Views today: 7.64k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

An alternating current can be produced by A a transformer class 12 physics CBSE

What is the value of 01+23+45+67++1617+1819+20 class 11 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
