Find the value of $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)$
$
\left( A \right).{\text{ }}\dfrac{{2a}}{b} \\
\left( B \right).{\text{ }}\dfrac{a}{b} \\
\left( C \right).{\text{ }}\dfrac{b}{a} \\
\left( D \right).{\text{ }}\dfrac{{2b}}{a} \\
$
Answer
383.7k+ views
Hint: Solve by using simple trigonometric identities of $\tan \theta $ and $\cos \theta $.
Given $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right){\text{ }} \ldots \left( 1 \right)$
Let $\dfrac{1}{2}{\cos ^{ - 1}}\dfrac{a}{b} = \theta $
$
\therefore {\cos ^{ - 1}}\dfrac{a}{b} = 2\theta \\
\cos 2\theta = \dfrac{a}{b}{\text{ }} \ldots \left( 2 \right) \\
$
Put the value of $\dfrac{1}{2}{\cos ^{ - 1}}\dfrac{a}{b} = \theta $ in equation $\left( 1 \right)$, we get
$ \Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) + \tan \left( {\dfrac{\pi }{4} - \theta } \right){\text{ }} \ldots \left( 3 \right)$
We know that, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$and $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Using above identities in$\left( 3 \right)$, we get
$ \Rightarrow \dfrac{{\tan \dfrac{\pi }{4} + \tan \theta }}{{1 - \tan \dfrac{\pi }{4}\tan \theta }} + \dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{1 + \tan \dfrac{\pi }{4}\tan \theta }}$
Putting the value of $\tan \dfrac{\pi }{4} = 1$ in above equation, we get
$
\Rightarrow \dfrac{{1 + \tan \theta }}{{1 - 1\tan \theta }} + \dfrac{{1 - \tan \theta }}{{1 + 1\tan \theta }} \\
\Rightarrow \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} + \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }} \\
$
Using cross multiplication, we get
\[
\Rightarrow \dfrac{{{{\left( {1 + \tan \theta } \right)}^2} + {{\left( {1 - \tan \theta } \right)}^2}}}{{\left( {1 - \tan \theta } \right)\left( {1 + \tan \theta } \right)}} \\
\Rightarrow \dfrac{{1 + 2\tan \theta + {{\tan }^2}\theta + 1 - 2\tan \theta + {{\tan }^2}\theta }}{{{{\left( 1 \right)}^2} - {{\left( {\tan \theta } \right)}^2}}}{\text{ }}\left[ {\because {{\left( {a + b} \right)}^2} = {a^2} + 2ab + {b^2}{\text{ and }}{{\left( {a - b} \right)}^2} = {a^2} - 2ab + {b^2}} \right] \\
\Rightarrow \dfrac{{2 + 2{{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }} \\
\]
Taking $2$ common from numerator, we get
\[ \Rightarrow 2\left( {\dfrac{{1 + {{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }}} \right)\]
We know that $\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$. Hence, we can write above equation as:
$ \Rightarrow \dfrac{2}{{\left( {\cos 2\theta } \right)}}$
Now, putting the value of $\cos 2\theta $ from equation$\left( 2 \right)$in above equation, we get
$
\Rightarrow \dfrac{2}{{\left( {\dfrac{a}{b}} \right)}} \\
\Rightarrow \dfrac{{2b}}{a} \\
$
$\therefore $Correct option is $\left( D \right)$.
Note: In these types of problems, one should always try to convert the equation to some trigonometric identity by either taking out the common terms from the equations or try to minimize it by using the identities.
Given $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right){\text{ }} \ldots \left( 1 \right)$
Let $\dfrac{1}{2}{\cos ^{ - 1}}\dfrac{a}{b} = \theta $
$
\therefore {\cos ^{ - 1}}\dfrac{a}{b} = 2\theta \\
\cos 2\theta = \dfrac{a}{b}{\text{ }} \ldots \left( 2 \right) \\
$
Put the value of $\dfrac{1}{2}{\cos ^{ - 1}}\dfrac{a}{b} = \theta $ in equation $\left( 1 \right)$, we get
$ \Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) + \tan \left( {\dfrac{\pi }{4} - \theta } \right){\text{ }} \ldots \left( 3 \right)$
We know that, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$and $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Using above identities in$\left( 3 \right)$, we get
$ \Rightarrow \dfrac{{\tan \dfrac{\pi }{4} + \tan \theta }}{{1 - \tan \dfrac{\pi }{4}\tan \theta }} + \dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{1 + \tan \dfrac{\pi }{4}\tan \theta }}$
Putting the value of $\tan \dfrac{\pi }{4} = 1$ in above equation, we get
$
\Rightarrow \dfrac{{1 + \tan \theta }}{{1 - 1\tan \theta }} + \dfrac{{1 - \tan \theta }}{{1 + 1\tan \theta }} \\
\Rightarrow \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} + \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }} \\
$
Using cross multiplication, we get
\[
\Rightarrow \dfrac{{{{\left( {1 + \tan \theta } \right)}^2} + {{\left( {1 - \tan \theta } \right)}^2}}}{{\left( {1 - \tan \theta } \right)\left( {1 + \tan \theta } \right)}} \\
\Rightarrow \dfrac{{1 + 2\tan \theta + {{\tan }^2}\theta + 1 - 2\tan \theta + {{\tan }^2}\theta }}{{{{\left( 1 \right)}^2} - {{\left( {\tan \theta } \right)}^2}}}{\text{ }}\left[ {\because {{\left( {a + b} \right)}^2} = {a^2} + 2ab + {b^2}{\text{ and }}{{\left( {a - b} \right)}^2} = {a^2} - 2ab + {b^2}} \right] \\
\Rightarrow \dfrac{{2 + 2{{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }} \\
\]
Taking $2$ common from numerator, we get
\[ \Rightarrow 2\left( {\dfrac{{1 + {{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }}} \right)\]
We know that $\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$. Hence, we can write above equation as:
$ \Rightarrow \dfrac{2}{{\left( {\cos 2\theta } \right)}}$
Now, putting the value of $\cos 2\theta $ from equation$\left( 2 \right)$in above equation, we get
$
\Rightarrow \dfrac{2}{{\left( {\dfrac{a}{b}} \right)}} \\
\Rightarrow \dfrac{{2b}}{a} \\
$
$\therefore $Correct option is $\left( D \right)$.
Note: In these types of problems, one should always try to convert the equation to some trigonometric identity by either taking out the common terms from the equations or try to minimize it by using the identities.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How many meters are there in a kilometer And how many class 8 maths CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

What were the major teachings of Baba Guru Nanak class 7 social science CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a labelled sketch of the human eye class 12 physics CBSE
