
Find the value of $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right)$
$
\left( A \right).{\text{ }}\dfrac{{2a}}{b} \\
\left( B \right).{\text{ }}\dfrac{a}{b} \\
\left( C \right).{\text{ }}\dfrac{b}{a} \\
\left( D \right).{\text{ }}\dfrac{{2b}}{a} \\
$
Answer
623.7k+ views
Hint: Solve by using simple trigonometric identities of $\tan \theta $ and $\cos \theta $.
Given $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right){\text{ }} \ldots \left( 1 \right)$
Let $\dfrac{1}{2}{\cos ^{ - 1}}\dfrac{a}{b} = \theta $
$
\therefore {\cos ^{ - 1}}\dfrac{a}{b} = 2\theta \\
\cos 2\theta = \dfrac{a}{b}{\text{ }} \ldots \left( 2 \right) \\
$
Put the value of $\dfrac{1}{2}{\cos ^{ - 1}}\dfrac{a}{b} = \theta $ in equation $\left( 1 \right)$, we get
$ \Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) + \tan \left( {\dfrac{\pi }{4} - \theta } \right){\text{ }} \ldots \left( 3 \right)$
We know that, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$and $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Using above identities in$\left( 3 \right)$, we get
$ \Rightarrow \dfrac{{\tan \dfrac{\pi }{4} + \tan \theta }}{{1 - \tan \dfrac{\pi }{4}\tan \theta }} + \dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{1 + \tan \dfrac{\pi }{4}\tan \theta }}$
Putting the value of $\tan \dfrac{\pi }{4} = 1$ in above equation, we get
$
\Rightarrow \dfrac{{1 + \tan \theta }}{{1 - 1\tan \theta }} + \dfrac{{1 - \tan \theta }}{{1 + 1\tan \theta }} \\
\Rightarrow \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} + \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }} \\
$
Using cross multiplication, we get
\[
\Rightarrow \dfrac{{{{\left( {1 + \tan \theta } \right)}^2} + {{\left( {1 - \tan \theta } \right)}^2}}}{{\left( {1 - \tan \theta } \right)\left( {1 + \tan \theta } \right)}} \\
\Rightarrow \dfrac{{1 + 2\tan \theta + {{\tan }^2}\theta + 1 - 2\tan \theta + {{\tan }^2}\theta }}{{{{\left( 1 \right)}^2} - {{\left( {\tan \theta } \right)}^2}}}{\text{ }}\left[ {\because {{\left( {a + b} \right)}^2} = {a^2} + 2ab + {b^2}{\text{ and }}{{\left( {a - b} \right)}^2} = {a^2} - 2ab + {b^2}} \right] \\
\Rightarrow \dfrac{{2 + 2{{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }} \\
\]
Taking $2$ common from numerator, we get
\[ \Rightarrow 2\left( {\dfrac{{1 + {{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }}} \right)\]
We know that $\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$. Hence, we can write above equation as:
$ \Rightarrow \dfrac{2}{{\left( {\cos 2\theta } \right)}}$
Now, putting the value of $\cos 2\theta $ from equation$\left( 2 \right)$in above equation, we get
$
\Rightarrow \dfrac{2}{{\left( {\dfrac{a}{b}} \right)}} \\
\Rightarrow \dfrac{{2b}}{a} \\
$
$\therefore $Correct option is $\left( D \right)$.
Note: In these types of problems, one should always try to convert the equation to some trigonometric identity by either taking out the common terms from the equations or try to minimize it by using the identities.
Given $\tan \left( {\dfrac{\pi }{4} + \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right) + \tan \left( {\dfrac{\pi }{4} - \dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{a}{b}} \right){\text{ }} \ldots \left( 1 \right)$
Let $\dfrac{1}{2}{\cos ^{ - 1}}\dfrac{a}{b} = \theta $
$
\therefore {\cos ^{ - 1}}\dfrac{a}{b} = 2\theta \\
\cos 2\theta = \dfrac{a}{b}{\text{ }} \ldots \left( 2 \right) \\
$
Put the value of $\dfrac{1}{2}{\cos ^{ - 1}}\dfrac{a}{b} = \theta $ in equation $\left( 1 \right)$, we get
$ \Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) + \tan \left( {\dfrac{\pi }{4} - \theta } \right){\text{ }} \ldots \left( 3 \right)$
We know that, $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$and $\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}$
Using above identities in$\left( 3 \right)$, we get
$ \Rightarrow \dfrac{{\tan \dfrac{\pi }{4} + \tan \theta }}{{1 - \tan \dfrac{\pi }{4}\tan \theta }} + \dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{1 + \tan \dfrac{\pi }{4}\tan \theta }}$
Putting the value of $\tan \dfrac{\pi }{4} = 1$ in above equation, we get
$
\Rightarrow \dfrac{{1 + \tan \theta }}{{1 - 1\tan \theta }} + \dfrac{{1 - \tan \theta }}{{1 + 1\tan \theta }} \\
\Rightarrow \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} + \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }} \\
$
Using cross multiplication, we get
\[
\Rightarrow \dfrac{{{{\left( {1 + \tan \theta } \right)}^2} + {{\left( {1 - \tan \theta } \right)}^2}}}{{\left( {1 - \tan \theta } \right)\left( {1 + \tan \theta } \right)}} \\
\Rightarrow \dfrac{{1 + 2\tan \theta + {{\tan }^2}\theta + 1 - 2\tan \theta + {{\tan }^2}\theta }}{{{{\left( 1 \right)}^2} - {{\left( {\tan \theta } \right)}^2}}}{\text{ }}\left[ {\because {{\left( {a + b} \right)}^2} = {a^2} + 2ab + {b^2}{\text{ and }}{{\left( {a - b} \right)}^2} = {a^2} - 2ab + {b^2}} \right] \\
\Rightarrow \dfrac{{2 + 2{{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }} \\
\]
Taking $2$ common from numerator, we get
\[ \Rightarrow 2\left( {\dfrac{{1 + {{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }}} \right)\]
We know that $\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$. Hence, we can write above equation as:
$ \Rightarrow \dfrac{2}{{\left( {\cos 2\theta } \right)}}$
Now, putting the value of $\cos 2\theta $ from equation$\left( 2 \right)$in above equation, we get
$
\Rightarrow \dfrac{2}{{\left( {\dfrac{a}{b}} \right)}} \\
\Rightarrow \dfrac{{2b}}{a} \\
$
$\therefore $Correct option is $\left( D \right)$.
Note: In these types of problems, one should always try to convert the equation to some trigonometric identity by either taking out the common terms from the equations or try to minimize it by using the identities.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

