
Find the value of $\tan {{20}^{\circ }}+4\sin {{20}^{\circ }}$
(a) $\sqrt{3}$
(b) $\dfrac{1}{\sqrt{3}}$
(c) 1
(d) -1
Answer
519.3k+ views
Hint: Assume the given expression as E. First of all use the conversion $\tan x=\dfrac{\sin x}{\cos x}$ to simplify. Now, take LCM and use the trigonometric identity $2\sin a\cos a=\sin 2a$. Further, break the terms of the numerator and use the identity $\sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right)$ to simplify. Convert the sine function into the cosine function using the complementary angle formula $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $ in the numerator and use the identity $\cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right)$. Cancel the common factors and use the values $\sin {{30}^{\circ }}=\dfrac{1}{2}$ and $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$ to get the answer.
Complete step by step answer:
Here we have been asked to find the value of the expression $\tan {{20}^{\circ }}+4\sin {{20}^{\circ }}$. Let us assume the given expression as E, so we have,
$\Rightarrow E=\tan {{20}^{\circ }}+4\sin {{20}^{\circ }}$
Using the conversion formula $\tan x=\dfrac{\sin x}{\cos x}$ and taking the LCM to simplify we get,
$\begin{align}
& \Rightarrow E=\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}+4\sin {{20}^{\circ }} \\
& \Rightarrow E=\dfrac{\sin {{20}^{\circ }}+4\sin {{20}^{\circ }}\cos {{20}^{\circ }}}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{\sin {{20}^{\circ }}+2\times \left( 2\sin {{20}^{\circ }}\cos {{20}^{\circ }} \right)}{\cos {{20}^{\circ }}} \\
\end{align}$
Using the trigonometric identity $2\sin a\cos a=\sin 2a$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{\sin {{20}^{\circ }}+2\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{\left( \sin {{20}^{\circ }}+\sin {{40}^{\circ }} \right)+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
\end{align}$
Using the identity $\sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right)$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{2\sin \left( \dfrac{{{40}^{\circ }}+{{20}^{\circ }}}{2} \right)\cos \left( \dfrac{{{40}^{\circ }}-{{20}^{\circ }}}{2} \right)+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{2\sin \left( {{30}^{\circ }} \right)\cos \left( {{10}^{\circ }} \right)+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
\end{align}$
Substituting the value $\sin {{30}^{\circ }}=\dfrac{1}{2}$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{2\times \dfrac{1}{2}\times \cos {{10}^{\circ }}+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{\cos {{10}^{\circ }}+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
\end{align}$
Now, converting the sine function into the cosine function by using the complementary angle formula $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $ in the numerator we get,
$\Rightarrow E=\dfrac{\cos {{10}^{\circ }}+\cos {{50}^{\circ }}}{\cos {{20}^{\circ }}}$
Using the identity $\cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right)$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{2\cos \left( \dfrac{{{50}^{\circ }}+{{10}^{\circ }}}{2} \right)\cos \left( \dfrac{{{50}^{\circ }}-{{10}^{\circ }}}{2} \right)}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{2\cos {{30}^{\circ }}\cos {{20}^{\circ }}}{\cos {{20}^{\circ }}} \\
\end{align}$
Using the value $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and cancelling the common factor we get,
$\begin{align}
& \Rightarrow E=2\times \dfrac{\sqrt{3}}{2} \\
& \therefore E=\sqrt{3} \\
\end{align}$
So, the correct answer is “Option a”.
Note: Note that in the end you can also convert the cosine function into the sine function and then apply the suitable trigonometric identity to get the answer. But in that case you have to apply the complementary angle formula again to cancel the common factor in the denominator. You must remember all the trigonometric identities as they are used in other chapters and subjects also.
Complete step by step answer:
Here we have been asked to find the value of the expression $\tan {{20}^{\circ }}+4\sin {{20}^{\circ }}$. Let us assume the given expression as E, so we have,
$\Rightarrow E=\tan {{20}^{\circ }}+4\sin {{20}^{\circ }}$
Using the conversion formula $\tan x=\dfrac{\sin x}{\cos x}$ and taking the LCM to simplify we get,
$\begin{align}
& \Rightarrow E=\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}+4\sin {{20}^{\circ }} \\
& \Rightarrow E=\dfrac{\sin {{20}^{\circ }}+4\sin {{20}^{\circ }}\cos {{20}^{\circ }}}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{\sin {{20}^{\circ }}+2\times \left( 2\sin {{20}^{\circ }}\cos {{20}^{\circ }} \right)}{\cos {{20}^{\circ }}} \\
\end{align}$
Using the trigonometric identity $2\sin a\cos a=\sin 2a$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{\sin {{20}^{\circ }}+2\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{\left( \sin {{20}^{\circ }}+\sin {{40}^{\circ }} \right)+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
\end{align}$
Using the identity $\sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right)$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{2\sin \left( \dfrac{{{40}^{\circ }}+{{20}^{\circ }}}{2} \right)\cos \left( \dfrac{{{40}^{\circ }}-{{20}^{\circ }}}{2} \right)+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{2\sin \left( {{30}^{\circ }} \right)\cos \left( {{10}^{\circ }} \right)+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
\end{align}$
Substituting the value $\sin {{30}^{\circ }}=\dfrac{1}{2}$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{2\times \dfrac{1}{2}\times \cos {{10}^{\circ }}+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{\cos {{10}^{\circ }}+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
\end{align}$
Now, converting the sine function into the cosine function by using the complementary angle formula $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $ in the numerator we get,
$\Rightarrow E=\dfrac{\cos {{10}^{\circ }}+\cos {{50}^{\circ }}}{\cos {{20}^{\circ }}}$
Using the identity $\cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right)$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{2\cos \left( \dfrac{{{50}^{\circ }}+{{10}^{\circ }}}{2} \right)\cos \left( \dfrac{{{50}^{\circ }}-{{10}^{\circ }}}{2} \right)}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{2\cos {{30}^{\circ }}\cos {{20}^{\circ }}}{\cos {{20}^{\circ }}} \\
\end{align}$
Using the value $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and cancelling the common factor we get,
$\begin{align}
& \Rightarrow E=2\times \dfrac{\sqrt{3}}{2} \\
& \therefore E=\sqrt{3} \\
\end{align}$
So, the correct answer is “Option a”.
Note: Note that in the end you can also convert the cosine function into the sine function and then apply the suitable trigonometric identity to get the answer. But in that case you have to apply the complementary angle formula again to cancel the common factor in the denominator. You must remember all the trigonometric identities as they are used in other chapters and subjects also.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

