
Find the value of $\tan {{20}^{\circ }}+4\sin {{20}^{\circ }}$
(a) $\sqrt{3}$
(b) $\dfrac{1}{\sqrt{3}}$
(c) 1
(d) -1
Answer
411.6k+ views
Hint: Assume the given expression as E. First of all use the conversion $\tan x=\dfrac{\sin x}{\cos x}$ to simplify. Now, take LCM and use the trigonometric identity $2\sin a\cos a=\sin 2a$. Further, break the terms of the numerator and use the identity $\sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right)$ to simplify. Convert the sine function into the cosine function using the complementary angle formula $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $ in the numerator and use the identity $\cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right)$. Cancel the common factors and use the values $\sin {{30}^{\circ }}=\dfrac{1}{2}$ and $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$ to get the answer.
Complete step by step answer:
Here we have been asked to find the value of the expression $\tan {{20}^{\circ }}+4\sin {{20}^{\circ }}$. Let us assume the given expression as E, so we have,
$\Rightarrow E=\tan {{20}^{\circ }}+4\sin {{20}^{\circ }}$
Using the conversion formula $\tan x=\dfrac{\sin x}{\cos x}$ and taking the LCM to simplify we get,
$\begin{align}
& \Rightarrow E=\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}+4\sin {{20}^{\circ }} \\
& \Rightarrow E=\dfrac{\sin {{20}^{\circ }}+4\sin {{20}^{\circ }}\cos {{20}^{\circ }}}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{\sin {{20}^{\circ }}+2\times \left( 2\sin {{20}^{\circ }}\cos {{20}^{\circ }} \right)}{\cos {{20}^{\circ }}} \\
\end{align}$
Using the trigonometric identity $2\sin a\cos a=\sin 2a$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{\sin {{20}^{\circ }}+2\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{\left( \sin {{20}^{\circ }}+\sin {{40}^{\circ }} \right)+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
\end{align}$
Using the identity $\sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right)$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{2\sin \left( \dfrac{{{40}^{\circ }}+{{20}^{\circ }}}{2} \right)\cos \left( \dfrac{{{40}^{\circ }}-{{20}^{\circ }}}{2} \right)+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{2\sin \left( {{30}^{\circ }} \right)\cos \left( {{10}^{\circ }} \right)+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
\end{align}$
Substituting the value $\sin {{30}^{\circ }}=\dfrac{1}{2}$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{2\times \dfrac{1}{2}\times \cos {{10}^{\circ }}+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{\cos {{10}^{\circ }}+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
\end{align}$
Now, converting the sine function into the cosine function by using the complementary angle formula $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $ in the numerator we get,
$\Rightarrow E=\dfrac{\cos {{10}^{\circ }}+\cos {{50}^{\circ }}}{\cos {{20}^{\circ }}}$
Using the identity $\cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right)$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{2\cos \left( \dfrac{{{50}^{\circ }}+{{10}^{\circ }}}{2} \right)\cos \left( \dfrac{{{50}^{\circ }}-{{10}^{\circ }}}{2} \right)}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{2\cos {{30}^{\circ }}\cos {{20}^{\circ }}}{\cos {{20}^{\circ }}} \\
\end{align}$
Using the value $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and cancelling the common factor we get,
$\begin{align}
& \Rightarrow E=2\times \dfrac{\sqrt{3}}{2} \\
& \therefore E=\sqrt{3} \\
\end{align}$
So, the correct answer is “Option a”.
Note: Note that in the end you can also convert the cosine function into the sine function and then apply the suitable trigonometric identity to get the answer. But in that case you have to apply the complementary angle formula again to cancel the common factor in the denominator. You must remember all the trigonometric identities as they are used in other chapters and subjects also.
Complete step by step answer:
Here we have been asked to find the value of the expression $\tan {{20}^{\circ }}+4\sin {{20}^{\circ }}$. Let us assume the given expression as E, so we have,
$\Rightarrow E=\tan {{20}^{\circ }}+4\sin {{20}^{\circ }}$
Using the conversion formula $\tan x=\dfrac{\sin x}{\cos x}$ and taking the LCM to simplify we get,
$\begin{align}
& \Rightarrow E=\dfrac{\sin {{20}^{\circ }}}{\cos {{20}^{\circ }}}+4\sin {{20}^{\circ }} \\
& \Rightarrow E=\dfrac{\sin {{20}^{\circ }}+4\sin {{20}^{\circ }}\cos {{20}^{\circ }}}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{\sin {{20}^{\circ }}+2\times \left( 2\sin {{20}^{\circ }}\cos {{20}^{\circ }} \right)}{\cos {{20}^{\circ }}} \\
\end{align}$
Using the trigonometric identity $2\sin a\cos a=\sin 2a$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{\sin {{20}^{\circ }}+2\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{\left( \sin {{20}^{\circ }}+\sin {{40}^{\circ }} \right)+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
\end{align}$
Using the identity $\sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right)$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{2\sin \left( \dfrac{{{40}^{\circ }}+{{20}^{\circ }}}{2} \right)\cos \left( \dfrac{{{40}^{\circ }}-{{20}^{\circ }}}{2} \right)+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{2\sin \left( {{30}^{\circ }} \right)\cos \left( {{10}^{\circ }} \right)+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
\end{align}$
Substituting the value $\sin {{30}^{\circ }}=\dfrac{1}{2}$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{2\times \dfrac{1}{2}\times \cos {{10}^{\circ }}+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{\cos {{10}^{\circ }}+\sin {{40}^{\circ }}}{\cos {{20}^{\circ }}} \\
\end{align}$
Now, converting the sine function into the cosine function by using the complementary angle formula $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $ in the numerator we get,
$\Rightarrow E=\dfrac{\cos {{10}^{\circ }}+\cos {{50}^{\circ }}}{\cos {{20}^{\circ }}}$
Using the identity $\cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right)$ we get,
$\begin{align}
& \Rightarrow E=\dfrac{2\cos \left( \dfrac{{{50}^{\circ }}+{{10}^{\circ }}}{2} \right)\cos \left( \dfrac{{{50}^{\circ }}-{{10}^{\circ }}}{2} \right)}{\cos {{20}^{\circ }}} \\
& \Rightarrow E=\dfrac{2\cos {{30}^{\circ }}\cos {{20}^{\circ }}}{\cos {{20}^{\circ }}} \\
\end{align}$
Using the value $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and cancelling the common factor we get,
$\begin{align}
& \Rightarrow E=2\times \dfrac{\sqrt{3}}{2} \\
& \therefore E=\sqrt{3} \\
\end{align}$
So, the correct answer is “Option a”.
Note: Note that in the end you can also convert the cosine function into the sine function and then apply the suitable trigonometric identity to get the answer. But in that case you have to apply the complementary angle formula again to cancel the common factor in the denominator. You must remember all the trigonometric identities as they are used in other chapters and subjects also.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
