
Find the value of $\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}$.
Answer
616.2k+ views
Hint: Here, we have $\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}$ which is of the form $\sin A\cos B+\cos A\sin B$ where $A={{60}^{\circ }}$ and $B={{30}^{\circ }}$, which is the expansion of $\sin (A+B)$ where $A+B={{60}^{\circ }}+{{30}^{\circ }}$, hence we will get $\sin ({{60}^{\circ }}+{{30}^{\circ }})$ and also apply the formulas:
$\begin{align}
& \cos ({{90}^{\circ }}-A)=\sin A \\
& \sin ({{90}^{\circ }}-A)=\cos A \\
\end{align}$
Complete step-by-step answer:
Here, we have to find the value of $\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}$.
Now, we can rewrite the equation as:
$\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}$
Hence, the above equation is of the form $\sin A\cos B+\cos A\sin B$, which is the expansion of $\sin (A+B)$. i.e. we can write:
$\sin (A+B)=\sin A\cos B+\cos A\sin B$
Since, we have$A={{60}^{\circ }}$ and $B={{30}^{\circ }}$. We can apply the above formula where:
$\sin (A+B)=\sin ({{60}^{\circ }}+{{30}^{\circ }})$
i.e. we obtain the equation:
$\begin{align}
& \sin ({{60}^{\circ }}+{{30}^{\circ }})=\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{30}^{\circ }}\sin {{60}^{\circ }} \\
& \sin {{90}^{\circ }}=\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{30}^{\circ }}\sin {{60}^{\circ }} \\
\end{align}$
We know that the value of $\sin {{90}^{\circ }}=1$.
Therefore, we will get:
$\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{30}^{\circ }}\sin {{60}^{\circ }}=\sin {{90}^{\circ }}=1$
Hence we can say that the value of,
$\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}=1$
or
Here, there is another method to find the solution, i.e, by directly substituting the values for $\begin{align}
& \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \sin {{30}^{\circ }}=\dfrac{1}{2} \\
& \cos {{60}^{\circ }}=\dfrac{1}{2} \\
& \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
\end{align}$
Hence by substituting all these values in $\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}$we get:
$\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\times \dfrac{1}{2}$
We know that $\sqrt{3}\times \sqrt{3}=3$. Hence, we get:
$\sin {{60}^{{}^\circ }}\cos {{30}^{{}^\circ }}+\cos {{60}^{{}^\circ }}\sin {{30}^{{}^\circ }}=\dfrac{3}{4}+\dfrac{1}{4}$
Now, by taking the LCM we get:
$\begin{align}
& \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}=\dfrac{3+1}{4} \\
& \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}=\dfrac{4}{4} \\
& \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}=1 \\
\end{align}$
or
Here, we can also solve this by converting everything into sine. i.e.
We have the formulas:
$\begin{align}
& \cos ({{90}^{\circ }}-A)=\sin A \\
& \sin ({{90}^{\circ }}-A)=\cos A \\
\end{align}$
That is, we can write:
$\begin{align}
& \cos {{30}^{\circ }}=\sin ({{90}^{\circ }}-{{30}^{\circ }}) \\
& \cos {{30}^{\circ }}=\sin {{60}^{\circ }}\text{ }.....\text{ (1)} \\
\end{align}$
Similarly, we will get:
$\begin{align}
& \sin {{30}^{\circ }}=\cos ({{90}^{\circ }}-{{30}^{\circ }}) \\
& \sin {{30}^{\circ }}=\cos {{60}^{\circ }}\text{ }.....\text{ (2)} \\
\end{align}$
By applying equation (1) and equation (2) in $\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}$we get:
$\begin{align}
& \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}=\sin {{60}^{\circ }}\sin {{60}^{\circ }}+\cos {{60}^{\circ }}\cos {{60}^{\circ }} \\
& \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}={{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}{{60}^{\circ }} \\
\end{align}$
We also know that ${{\cos }^{2}}A+{{\sin }^{2}}A=1$.
Therefore, we can say that ${{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}{{60}^{\circ }}=1$
Hence, we will get:
$\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}=1$
Hence we got the value of $\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}=1$ in three different ways.
We can apply any one of these methods to obtain the solution.
Note: Here, three different methods are given to find the value of $\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}$. If we know the trigonometric values of sine and cosine angles, then it is the easiest method to solve the problem. But, if we have doubt regarding any values, then go for the other two alternate methods.
$\begin{align}
& \cos ({{90}^{\circ }}-A)=\sin A \\
& \sin ({{90}^{\circ }}-A)=\cos A \\
\end{align}$
Complete step-by-step answer:
Here, we have to find the value of $\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}$.
Now, we can rewrite the equation as:
$\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}$
Hence, the above equation is of the form $\sin A\cos B+\cos A\sin B$, which is the expansion of $\sin (A+B)$. i.e. we can write:
$\sin (A+B)=\sin A\cos B+\cos A\sin B$
Since, we have$A={{60}^{\circ }}$ and $B={{30}^{\circ }}$. We can apply the above formula where:
$\sin (A+B)=\sin ({{60}^{\circ }}+{{30}^{\circ }})$
i.e. we obtain the equation:
$\begin{align}
& \sin ({{60}^{\circ }}+{{30}^{\circ }})=\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{30}^{\circ }}\sin {{60}^{\circ }} \\
& \sin {{90}^{\circ }}=\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{30}^{\circ }}\sin {{60}^{\circ }} \\
\end{align}$
We know that the value of $\sin {{90}^{\circ }}=1$.
Therefore, we will get:
$\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{30}^{\circ }}\sin {{60}^{\circ }}=\sin {{90}^{\circ }}=1$
Hence we can say that the value of,
$\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}=1$
or
Here, there is another method to find the solution, i.e, by directly substituting the values for $\begin{align}
& \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \sin {{30}^{\circ }}=\dfrac{1}{2} \\
& \cos {{60}^{\circ }}=\dfrac{1}{2} \\
& \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
\end{align}$
Hence by substituting all these values in $\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}$we get:
$\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\times \dfrac{1}{2}$
We know that $\sqrt{3}\times \sqrt{3}=3$. Hence, we get:
$\sin {{60}^{{}^\circ }}\cos {{30}^{{}^\circ }}+\cos {{60}^{{}^\circ }}\sin {{30}^{{}^\circ }}=\dfrac{3}{4}+\dfrac{1}{4}$
Now, by taking the LCM we get:
$\begin{align}
& \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}=\dfrac{3+1}{4} \\
& \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}=\dfrac{4}{4} \\
& \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\cos {{60}^{\circ }}\sin {{30}^{\circ }}=1 \\
\end{align}$
or
Here, we can also solve this by converting everything into sine. i.e.
We have the formulas:
$\begin{align}
& \cos ({{90}^{\circ }}-A)=\sin A \\
& \sin ({{90}^{\circ }}-A)=\cos A \\
\end{align}$
That is, we can write:
$\begin{align}
& \cos {{30}^{\circ }}=\sin ({{90}^{\circ }}-{{30}^{\circ }}) \\
& \cos {{30}^{\circ }}=\sin {{60}^{\circ }}\text{ }.....\text{ (1)} \\
\end{align}$
Similarly, we will get:
$\begin{align}
& \sin {{30}^{\circ }}=\cos ({{90}^{\circ }}-{{30}^{\circ }}) \\
& \sin {{30}^{\circ }}=\cos {{60}^{\circ }}\text{ }.....\text{ (2)} \\
\end{align}$
By applying equation (1) and equation (2) in $\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}$we get:
$\begin{align}
& \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}=\sin {{60}^{\circ }}\sin {{60}^{\circ }}+\cos {{60}^{\circ }}\cos {{60}^{\circ }} \\
& \sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}={{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}{{60}^{\circ }} \\
\end{align}$
We also know that ${{\cos }^{2}}A+{{\sin }^{2}}A=1$.
Therefore, we can say that ${{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}{{60}^{\circ }}=1$
Hence, we will get:
$\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}=1$
Hence we got the value of $\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}=1$ in three different ways.
We can apply any one of these methods to obtain the solution.
Note: Here, three different methods are given to find the value of $\sin {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{30}^{\circ }}\cos {{60}^{\circ }}$. If we know the trigonometric values of sine and cosine angles, then it is the easiest method to solve the problem. But, if we have doubt regarding any values, then go for the other two alternate methods.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

