
Find the value of \[\sin {{330}^{\circ }}\cos {{120}^{\circ }}+\cos {{210}^{\circ }}\sin {{300}^{\circ }}\].
Answer
579k+ views
Hint: Let us assume the value of \[\sin {{330}^{\circ }}\cos {{120}^{\circ }}+\cos {{210}^{\circ }}\sin {{300}^{\circ }}\] is equal to I. Now we should first express 330 in terms of \[2\pi -\theta \]. We know that \[\sin \left( n\pi -\theta \right)=-\sin \theta \] if n is even. Now by using this concept, we will find the value of \[\sin {{330}^{\circ }}\]. Now we should express 120 in terms of \[\pi -\theta \]. We know that \[\sin \left( n\pi -\theta \right)=-\sin \theta \] if n is even. Now by using this concept, we will find the value of \[\cos {{120}^{\circ }}\]. Now we should express 210 in terms of \[\pi +\theta \]. We know that \[\cos \left( n\pi +\theta \right)=-\cos \theta \] if n is odd. Now by using this concept, we will find the value of \[\cos {{210}^{\circ }}\]. Now we should first express 300 in terms of \[2\pi -\theta \]. We know that \[\sin \left( n\pi -\theta \right)=-\sin \theta \] if n is even. Now by using this concept, we will find the value of \[\sin {{300}^{\circ }}\]. In this way, we can find the value of \[\sin {{330}^{\circ }}\cos {{120}^{\circ }}+\cos {{210}^{\circ }}\sin {{300}^{\circ }}\].
Complete step-by-step answer:
From the question, it is clear that we should find the value of \[\sin {{330}^{\circ }}\cos {{120}^{\circ }}+\cos {{210}^{\circ }}\sin {{300}^{\circ }}\].
Let us assume the value of \[\sin {{330}^{\circ }}\cos {{120}^{\circ }}+\cos {{210}^{\circ }}\sin {{300}^{\circ }}\] is equal to I.
\[I=\sin {{330}^{\circ }}\cos {{120}^{\circ }}+\cos {{210}^{\circ }}\sin {{300}^{\circ }}.....(1)\]
Now we have to find the value of \[\sin {{330}^{\circ }}\].
We know that \[\sin \left( n\pi -\theta \right)=-\sin \theta \] if n is even.
\[\begin{align}
& \Rightarrow sin{{330}^{\circ }}=\sin \left( 2\pi -{{30}^{\circ }} \right) \\
& \Rightarrow \sin {{330}^{\circ }}=-\sin {{30}^{\circ }} \\
\end{align}\]
We know that \[\sin {{30}^{\circ }}=\dfrac{1}{2}\].
\[\Rightarrow \sin {{330}^{\circ }}=-\dfrac{1}{2}......(2)\]
Now we should find the value of \[\cos {{120}^{\circ }}\].
We know that \[\cos \left( n\pi -\theta \right)=-\cos \theta \] if n is odd.
\[\begin{align}
& \Rightarrow \cos {{120}^{\circ }}=\cos \left( \pi -{{60}^{\circ }} \right) \\
& \Rightarrow \cos {{120}^{\circ }}=-\cos \left( {{60}^{\circ }} \right) \\
\end{align}\]
We know that \[\cos {{60}^{\circ }}=\dfrac{1}{2}\].
\[\Rightarrow \cos {{120}^{\circ }}=-\dfrac{1}{2}.......(3)\]
Now we should find the value of \[\cos {{210}^{\circ }}\].
We know that \[\cos \left( n\pi +\theta \right)=-\cos \theta \] if n is odd.
\[\begin{align}
& \Rightarrow \cos {{210}^{\circ }}=\cos \left( \pi +{{30}^{\circ }} \right) \\
& \Rightarrow \cos {{210}^{\circ }}=-\cos \left( {{30}^{\circ }} \right) \\
\end{align}\]
We know that \[\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow \cos {{210}^{\circ }}=-\dfrac{\sqrt{3}}{2}.......(4)\]
Now we have to find the value of \[\sin {{300}^{\circ }}\].
We know that \[\sin \left( n\pi -\theta \right)=-\sin \theta \] if n is even.
\[\begin{align}
& \Rightarrow sin{{300}^{\circ }}=\sin \left( 2\pi -{{60}^{\circ }} \right) \\
& \Rightarrow \sin {{300}^{\circ }}=-\sin {{60}^{\circ }} \\
\end{align}\]
We know that \[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow \sin {{300}^{\circ }}=-\dfrac{\sqrt{3}}{2}......(5)\]
Now let us substitute equation (2), equation (3), equation (4) and equation (5) in equation (1), then we get
\[\begin{align}
& I=\sin {{330}^{\circ }}\cos {{120}^{\circ }}+\cos {{210}^{\circ }}\sin {{300}^{\circ }} \\
& \Rightarrow I=\left( \dfrac{-1}{2} \right)\left( \dfrac{-1}{2} \right)+\left( \dfrac{-\sqrt{3}}{2} \right)\left( \dfrac{-\sqrt{3}}{2} \right) \\
& \Rightarrow I=\dfrac{1}{4}+\dfrac{3}{4} \\
& \Rightarrow I=1.....(6) \\
\end{align}\]
From equation (6), it is clear that the value of \[\sin {{330}^{\circ }}\cos {{120}^{\circ }}+\cos {{210}^{\circ }}\sin {{300}^{\circ }}\] is equal to 1.
Note: Students may have a misconception that \[\sin \left( n\pi -\theta \right)=\sin \theta \] if n is even. If this misconception is followed, then the final answer may get interrupted. In the same way, students may have a misconception that \[\cos \left( n\pi +\theta \right)=\cos \theta \] if n is odd. If even this misconception is followed, then also the final answer will get interrupted. So, these misconceptions should get avoided.
Complete step-by-step answer:
From the question, it is clear that we should find the value of \[\sin {{330}^{\circ }}\cos {{120}^{\circ }}+\cos {{210}^{\circ }}\sin {{300}^{\circ }}\].
Let us assume the value of \[\sin {{330}^{\circ }}\cos {{120}^{\circ }}+\cos {{210}^{\circ }}\sin {{300}^{\circ }}\] is equal to I.
\[I=\sin {{330}^{\circ }}\cos {{120}^{\circ }}+\cos {{210}^{\circ }}\sin {{300}^{\circ }}.....(1)\]
Now we have to find the value of \[\sin {{330}^{\circ }}\].
We know that \[\sin \left( n\pi -\theta \right)=-\sin \theta \] if n is even.
\[\begin{align}
& \Rightarrow sin{{330}^{\circ }}=\sin \left( 2\pi -{{30}^{\circ }} \right) \\
& \Rightarrow \sin {{330}^{\circ }}=-\sin {{30}^{\circ }} \\
\end{align}\]
We know that \[\sin {{30}^{\circ }}=\dfrac{1}{2}\].
\[\Rightarrow \sin {{330}^{\circ }}=-\dfrac{1}{2}......(2)\]
Now we should find the value of \[\cos {{120}^{\circ }}\].
We know that \[\cos \left( n\pi -\theta \right)=-\cos \theta \] if n is odd.
\[\begin{align}
& \Rightarrow \cos {{120}^{\circ }}=\cos \left( \pi -{{60}^{\circ }} \right) \\
& \Rightarrow \cos {{120}^{\circ }}=-\cos \left( {{60}^{\circ }} \right) \\
\end{align}\]
We know that \[\cos {{60}^{\circ }}=\dfrac{1}{2}\].
\[\Rightarrow \cos {{120}^{\circ }}=-\dfrac{1}{2}.......(3)\]
Now we should find the value of \[\cos {{210}^{\circ }}\].
We know that \[\cos \left( n\pi +\theta \right)=-\cos \theta \] if n is odd.
\[\begin{align}
& \Rightarrow \cos {{210}^{\circ }}=\cos \left( \pi +{{30}^{\circ }} \right) \\
& \Rightarrow \cos {{210}^{\circ }}=-\cos \left( {{30}^{\circ }} \right) \\
\end{align}\]
We know that \[\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow \cos {{210}^{\circ }}=-\dfrac{\sqrt{3}}{2}.......(4)\]
Now we have to find the value of \[\sin {{300}^{\circ }}\].
We know that \[\sin \left( n\pi -\theta \right)=-\sin \theta \] if n is even.
\[\begin{align}
& \Rightarrow sin{{300}^{\circ }}=\sin \left( 2\pi -{{60}^{\circ }} \right) \\
& \Rightarrow \sin {{300}^{\circ }}=-\sin {{60}^{\circ }} \\
\end{align}\]
We know that \[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\].
\[\Rightarrow \sin {{300}^{\circ }}=-\dfrac{\sqrt{3}}{2}......(5)\]
Now let us substitute equation (2), equation (3), equation (4) and equation (5) in equation (1), then we get
\[\begin{align}
& I=\sin {{330}^{\circ }}\cos {{120}^{\circ }}+\cos {{210}^{\circ }}\sin {{300}^{\circ }} \\
& \Rightarrow I=\left( \dfrac{-1}{2} \right)\left( \dfrac{-1}{2} \right)+\left( \dfrac{-\sqrt{3}}{2} \right)\left( \dfrac{-\sqrt{3}}{2} \right) \\
& \Rightarrow I=\dfrac{1}{4}+\dfrac{3}{4} \\
& \Rightarrow I=1.....(6) \\
\end{align}\]
From equation (6), it is clear that the value of \[\sin {{330}^{\circ }}\cos {{120}^{\circ }}+\cos {{210}^{\circ }}\sin {{300}^{\circ }}\] is equal to 1.
Note: Students may have a misconception that \[\sin \left( n\pi -\theta \right)=\sin \theta \] if n is even. If this misconception is followed, then the final answer may get interrupted. In the same way, students may have a misconception that \[\cos \left( n\pi +\theta \right)=\cos \theta \] if n is odd. If even this misconception is followed, then also the final answer will get interrupted. So, these misconceptions should get avoided.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

What are porins class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Differentiate between red algae and brown algae class 11 biology CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

