Answer
Verified
448.5k+ views
Hint: To solve this question we need to first know that a: b can also be expressed in the fractional form as $\dfrac{a}{b}$ and the value of $^{n}{{C}_{r}}$ is given by $\dfrac{n!}{r!(n-r)!}$. Now after that, we will put the required values in the given expression and solve them to find the value of r.
Complete step-by-step solution:
We know that the a : b can also be expressed in the fractional form as $\dfrac{a}{b}$. So we get,
\[\dfrac{^{28}{{C}_{2r}}}{^{24}{{C}_{2r}}}=\dfrac{225}{11}\]
And the value of $^{n}{{C}_{r}}$ is given by $\dfrac{n!}{r!(n-r)!}$.
Now by expanding the expression, we get
\[\begin{align}
& \dfrac{^{28}{{C}_{2r}}}{^{24}{{C}_{2r}}}=\dfrac{225}{11} \\
& \dfrac{\dfrac{28!}{2r!(28-2r)!}}{\dfrac{24!}{2r!(24-2r)!}}=\dfrac{225}{11} \\
& \dfrac{28!\,\times \,(24-2r!)}{24!\,\times (28-2r!)}=\dfrac{225}{11} \\
\end{align}\]
By expanding the factorials, we get
\[\dfrac{28\times \,27\times 26\times 25\times 24!\times (24-2r)!}{24!\,\times (28-2r)\times (27-2r)\times (26-2r)\times (25-2r)\times (24-2r)!}=\dfrac{225}{11}\]
By cancelling out similar terms, we get
\[\dfrac{28\times 27\times 26\times 25}{(28-2r)(27-2r)(26-2r)(25-2r)}=\dfrac{225}{11}\]
After further simplifying, we get
\[(28-2r)(27-2r)(26-2r)(25-2r)=\dfrac{28\times 27\times 26\times 25\times 11}{225}\]
Simplifying the RHS of the above expression,
\[(28-2r)(27-2r)(26-2r)(25-2r)=14\times 13\times 12\times 11\]
Now, if we observe, in the above expression there are 4 consecutive terms on LHS and 4 consecutive terms on RHS so, we can directly compare both of the sides,
Hence by comparing, we get
$\begin{align}
& 28-2r=14 \\
& 2r=28-14 \\
& r=7 \\
\end{align}$
We can also compare $(27-2r)$ with 13 and so on and will get the same value of $r$ as above.
Hence, value of $r$ we got is 7 which matches the option (c), hence (c) is the correct answer.
Note: You can also solve this question by putting each of the value of $r$ given in options and if LHS comes out to be equal to RHS it will be the correct answer but, this method involves a lot of calculations, and can be a little hectic. In the above solution, we have manipulated the RHS of the equation in such a way that we can directly compare it with LHS which makes the solving a lot easier so, whenever there is a polynomial expression (like in LHS in this question) which cannot be solved easily try to express RHS in such a way that it can be directly compared to LHS of the expression.
Complete step-by-step solution:
We know that the a : b can also be expressed in the fractional form as $\dfrac{a}{b}$. So we get,
\[\dfrac{^{28}{{C}_{2r}}}{^{24}{{C}_{2r}}}=\dfrac{225}{11}\]
And the value of $^{n}{{C}_{r}}$ is given by $\dfrac{n!}{r!(n-r)!}$.
Now by expanding the expression, we get
\[\begin{align}
& \dfrac{^{28}{{C}_{2r}}}{^{24}{{C}_{2r}}}=\dfrac{225}{11} \\
& \dfrac{\dfrac{28!}{2r!(28-2r)!}}{\dfrac{24!}{2r!(24-2r)!}}=\dfrac{225}{11} \\
& \dfrac{28!\,\times \,(24-2r!)}{24!\,\times (28-2r!)}=\dfrac{225}{11} \\
\end{align}\]
By expanding the factorials, we get
\[\dfrac{28\times \,27\times 26\times 25\times 24!\times (24-2r)!}{24!\,\times (28-2r)\times (27-2r)\times (26-2r)\times (25-2r)\times (24-2r)!}=\dfrac{225}{11}\]
By cancelling out similar terms, we get
\[\dfrac{28\times 27\times 26\times 25}{(28-2r)(27-2r)(26-2r)(25-2r)}=\dfrac{225}{11}\]
After further simplifying, we get
\[(28-2r)(27-2r)(26-2r)(25-2r)=\dfrac{28\times 27\times 26\times 25\times 11}{225}\]
Simplifying the RHS of the above expression,
\[(28-2r)(27-2r)(26-2r)(25-2r)=14\times 13\times 12\times 11\]
Now, if we observe, in the above expression there are 4 consecutive terms on LHS and 4 consecutive terms on RHS so, we can directly compare both of the sides,
Hence by comparing, we get
$\begin{align}
& 28-2r=14 \\
& 2r=28-14 \\
& r=7 \\
\end{align}$
We can also compare $(27-2r)$ with 13 and so on and will get the same value of $r$ as above.
Hence, value of $r$ we got is 7 which matches the option (c), hence (c) is the correct answer.
Note: You can also solve this question by putting each of the value of $r$ given in options and if LHS comes out to be equal to RHS it will be the correct answer but, this method involves a lot of calculations, and can be a little hectic. In the above solution, we have manipulated the RHS of the equation in such a way that we can directly compare it with LHS which makes the solving a lot easier so, whenever there is a polynomial expression (like in LHS in this question) which cannot be solved easily try to express RHS in such a way that it can be directly compared to LHS of the expression.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE