Answer

Verified

468.6k+ views

Hint: Use the properties of trigonometric functions and simplify the terms given in the bracket by multiplying each one of them and cancelling out the like terms with opposite signs.

We have to find the value of \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)\]. We will begin by simplifying the given expression by multiplying each of the terms in the two brackets.

Thus, we have \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=1\left( 1+\cot \theta -\csc \theta \right)+\tan \theta \left( 1+\cot \theta -\csc \theta \right)+\sec \theta \left( 1+\cot \theta -\csc \theta \right)\]

Further simplifying the equation, we get \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=1+\cot \theta -\csc \theta +\tan \theta \cot \theta +\tan \theta -\tan \theta \csc \theta +\sec \theta +\sec \theta \cot \theta -\sec \theta \csc \theta \]

We know that \[\tan \theta \cot \theta =1\] and \[\sec \theta =\dfrac{1}{\cos \theta },\csc \theta =\dfrac{1}{\sin \theta }\].

Thus, we have \[\tan \theta \csc \theta =\tan \theta \dfrac{1}{\sin \theta }=\dfrac{1}{\cos \theta }\].

Also, we have \[\sec \theta \cot \theta =\cot \theta \dfrac{1}{\cos \theta }=\dfrac{1}{\sin \theta }\].

Similarly, we get \[\sec \theta \csc \theta =\dfrac{1}{\sin \theta }\times \dfrac{1}{\cos \theta }=\dfrac{1}{\sin \theta \cos \theta }\].

Substituting all the above equations in the expansion of the given expression, we have \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=1+\cot \theta -\dfrac{1}{\sin \theta }+1+\tan \theta -\dfrac{1}{\cos \theta }+\dfrac{1}{\cos \theta }+\dfrac{1}{\sin \theta }-\dfrac{1}{\sin \theta \cos \theta }\]

Thus, we have \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=2+\cot \theta +\tan \theta -\dfrac{1}{\sin \theta \cos \theta }\].

We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].

Thus, we have \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=2+\cot \theta +\tan \theta -\dfrac{1}{\sin \theta \cos \theta }=2+\dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\sin \theta }-\dfrac{1}{\sin \theta \cos \theta }\]

Further simplifying the expression, we get \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=2+\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{\sin \theta \cos \theta }-\dfrac{1}{\sin \theta \cos \theta }\].

We know the identity \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].

Thus, we have \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=2+\dfrac{1}{\sin \theta \cos \theta }-\dfrac{1}{\sin \theta \cos \theta }\].

So, we get \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=2\].

Hence, the value of the expression \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)\] is \[2\], which is option (c).

Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius \[1\]). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.

We have to find the value of \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)\]. We will begin by simplifying the given expression by multiplying each of the terms in the two brackets.

Thus, we have \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=1\left( 1+\cot \theta -\csc \theta \right)+\tan \theta \left( 1+\cot \theta -\csc \theta \right)+\sec \theta \left( 1+\cot \theta -\csc \theta \right)\]

Further simplifying the equation, we get \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=1+\cot \theta -\csc \theta +\tan \theta \cot \theta +\tan \theta -\tan \theta \csc \theta +\sec \theta +\sec \theta \cot \theta -\sec \theta \csc \theta \]

We know that \[\tan \theta \cot \theta =1\] and \[\sec \theta =\dfrac{1}{\cos \theta },\csc \theta =\dfrac{1}{\sin \theta }\].

Thus, we have \[\tan \theta \csc \theta =\tan \theta \dfrac{1}{\sin \theta }=\dfrac{1}{\cos \theta }\].

Also, we have \[\sec \theta \cot \theta =\cot \theta \dfrac{1}{\cos \theta }=\dfrac{1}{\sin \theta }\].

Similarly, we get \[\sec \theta \csc \theta =\dfrac{1}{\sin \theta }\times \dfrac{1}{\cos \theta }=\dfrac{1}{\sin \theta \cos \theta }\].

Substituting all the above equations in the expansion of the given expression, we have \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=1+\cot \theta -\dfrac{1}{\sin \theta }+1+\tan \theta -\dfrac{1}{\cos \theta }+\dfrac{1}{\cos \theta }+\dfrac{1}{\sin \theta }-\dfrac{1}{\sin \theta \cos \theta }\]

Thus, we have \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=2+\cot \theta +\tan \theta -\dfrac{1}{\sin \theta \cos \theta }\].

We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta }\].

Thus, we have \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=2+\cot \theta +\tan \theta -\dfrac{1}{\sin \theta \cos \theta }=2+\dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\sin \theta }-\dfrac{1}{\sin \theta \cos \theta }\]

Further simplifying the expression, we get \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=2+\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{\sin \theta \cos \theta }-\dfrac{1}{\sin \theta \cos \theta }\].

We know the identity \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].

Thus, we have \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=2+\dfrac{1}{\sin \theta \cos \theta }-\dfrac{1}{\sin \theta \cos \theta }\].

So, we get \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)=2\].

Hence, the value of the expression \[\left( 1+\tan \theta +\sec \theta \right)\left( 1+\cot \theta -\csc \theta \right)\] is \[2\], which is option (c).

Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius \[1\]). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Which are the Top 10 Largest Countries of the World?

Write a letter to the principal requesting him to grant class 10 english CBSE

10 examples of evaporation in daily life with explanations

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE