
Find the value of $k$ so that the value of function$f$ is continuous at the indicated points.
\[f(x) = \left\{ {\begin{array}{*{20}{c}}
{\dfrac{{k\cos x}}{{\pi - 2x}},x \ne \dfrac{\pi }{2}} \\
{3,x = \dfrac{\pi }{2}}
\end{array}} \right.{\text{ at }}x = \dfrac{\pi }{2}\]
.
Answer
624k+ views
Hint - Use L-Hospital’s rule in order to solve the question easily.
A function \[{\text{f(x)}}\] is continuous at \[{\text{x = c}}\] , if
\[\mathop {\lim }\limits_{x \to 0} f(x) = f({\text{c}})\]
Here, \[f\left( {\dfrac{\pi }{2}} \right) = 3\]
\[\therefore {\text{ }}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{{\text{k}}\cos x}}{{\pi - 2x}} = 3\]
Since, left side of the equation is of \[\dfrac{0}{0}\] form so,
Using L-Hospital’s rule
\[
\Rightarrow \mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{ - {\text{k}}\sin x}}{{ - 2}} = 3 \\
\Rightarrow \dfrac{{{\text{k}}\sin \dfrac{\pi }{2}}}{2} = 3 \\
\Rightarrow {\text{k = 6}} \\
\]
Hence, for \[{\text{k = 6}}\], \[{\text{f(x)}}\] will be continuous at \[{\text{x = }}\dfrac{\pi }{2}\]
Note – As we know L-Hospital’s rule is applicable in limits if and only if the function under limit is of \[\dfrac{0}{0}\] form or of \[\dfrac{\infty }{\infty }\] form. In such cases all we need to do is differentiate the numerator and denominator separately and further continue with the limit. In the above question, the same was the case. As the function was present in \[\dfrac{0}{0}\] form, so we have used L-Hospital’s rule.
A function \[{\text{f(x)}}\] is continuous at \[{\text{x = c}}\] , if
\[\mathop {\lim }\limits_{x \to 0} f(x) = f({\text{c}})\]
Here, \[f\left( {\dfrac{\pi }{2}} \right) = 3\]
\[\therefore {\text{ }}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{{\text{k}}\cos x}}{{\pi - 2x}} = 3\]
Since, left side of the equation is of \[\dfrac{0}{0}\] form so,
Using L-Hospital’s rule
\[
\Rightarrow \mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{ - {\text{k}}\sin x}}{{ - 2}} = 3 \\
\Rightarrow \dfrac{{{\text{k}}\sin \dfrac{\pi }{2}}}{2} = 3 \\
\Rightarrow {\text{k = 6}} \\
\]
Hence, for \[{\text{k = 6}}\], \[{\text{f(x)}}\] will be continuous at \[{\text{x = }}\dfrac{\pi }{2}\]
Note – As we know L-Hospital’s rule is applicable in limits if and only if the function under limit is of \[\dfrac{0}{0}\] form or of \[\dfrac{\infty }{\infty }\] form. In such cases all we need to do is differentiate the numerator and denominator separately and further continue with the limit. In the above question, the same was the case. As the function was present in \[\dfrac{0}{0}\] form, so we have used L-Hospital’s rule.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

