Find the value of k, if $\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\dfrac{k}{16}$.
Answer
328.2k+ views
Hint: Write the given expression on LHS as \[\sin {{60}^{\circ }}\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)\]. Use the value of $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and then use the formula \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \] with $\theta ={{20}^{\circ }}$. This gives the value of the expression on LHS, and a linear equation in k. Solve the linear equation to find the value of k.
Complete step-by-step answer:
We have been given $\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}$on the LHS. We know the value of $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$. Using this value, the expression becomes,
\[\dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{80}^{\circ }}=\dfrac{k}{16}\]
Express $\sin {{40}^{\circ }}$ as $\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)$ and $\sin {{80}^{\circ }}$ as $\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)$. Thus, the expression becomes,
\[\begin{align}
& \dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{80}^{\circ }}=\dfrac{k}{16} \\
& \Rightarrow \dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{k}{16}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 1 \right) \\
\end{align}\]
The expression \[\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)\] can be written as \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\] with $\theta ={{20}^{\circ }}$.
We know that the expression \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\] can be directly found out using the formula \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \].
Thus, applying this formula to the given expression and substituting the value of $\theta ={{20}^{\circ }}$, we get
\[\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\sin \left( 3\times {{20}^{\circ }} \right)\]
\[\begin{align}
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\sin {{60}^{\circ }} \\
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\times \dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{\sqrt{3}}{8} \\
\end{align}\]
Substituting this value in equation (1), we get
\[\begin{align}
& \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{8}=\dfrac{k}{16} \\
& \Rightarrow \dfrac{3}{16}=\dfrac{k}{16} \\
\end{align}\]
Multiplying both sides of this equation by 16, we get
$3=k$
Thus the value of k is 3.
Note: The formula \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \] should be used carefully and works only for those values of $\theta $ for which the value of $\sin 3\theta $ is known to us. Derivation of the formula can be found by using the formula $\sin A\sin B=\dfrac{1}{2}\left( \cos \left( A-B \right)-\cos \left( A+B \right) \right)$ for $A={{60}^{\circ }}-\theta $ and $B={{60}^{\circ }}+\theta $.
Thus, the expression becomes
\[\begin{align}
& \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( {{60}^{\circ }}-\theta -\left( {{60}^{\circ }}+\theta \right) \right)-\cos \left( {{60}^{\circ }}-\theta +{{60}^{\circ }}+\theta \right) \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( -2\theta \right)-\cos \left( {{120}^{\circ }} \right) \right) \right) \\
\end{align}\]
Now, we know that $\cos \left( -\theta \right)=\cos \theta $ and $\cos {{120}^{\circ }}=\dfrac{-1}{2}$. Using these values in the above equation, we get
\[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( 2\theta \right)+\dfrac{1}{2} \right) \right)\]
In this equation, substitute $\cos 2\theta =1-2{{\sin }^{2}}\theta $.
\[\begin{align}
& \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( 1-2{{\sin }^{2}}\theta +\dfrac{1}{2} \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \dfrac{3}{2}-2{{\sin }^{2}}\theta \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{3}{4}-{{\sin }^{2}}\theta \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{3}{4}\sin \theta -{{\sin }^{3}}\theta \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\left( \sin \theta -4{{\sin }^{3}}\theta \right) \\
\end{align}\]
Now we know that \[\sin \theta -4{{\sin }^{3}}\theta =\sin 3\theta \]. Thus, the above expression becomes
\[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \]
This is the required proof. It is advisable to memorize this result as it is very helpful in solving questions where the expression can be reduced to the form of \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\].
Complete step-by-step answer:
We have been given $\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}$on the LHS. We know the value of $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$. Using this value, the expression becomes,
\[\dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{80}^{\circ }}=\dfrac{k}{16}\]
Express $\sin {{40}^{\circ }}$ as $\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)$ and $\sin {{80}^{\circ }}$ as $\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)$. Thus, the expression becomes,
\[\begin{align}
& \dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{80}^{\circ }}=\dfrac{k}{16} \\
& \Rightarrow \dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{k}{16}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 1 \right) \\
\end{align}\]
The expression \[\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)\] can be written as \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\] with $\theta ={{20}^{\circ }}$.
We know that the expression \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\] can be directly found out using the formula \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \].
Thus, applying this formula to the given expression and substituting the value of $\theta ={{20}^{\circ }}$, we get
\[\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\sin \left( 3\times {{20}^{\circ }} \right)\]
\[\begin{align}
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\sin {{60}^{\circ }} \\
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\times \dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{\sqrt{3}}{8} \\
\end{align}\]
Substituting this value in equation (1), we get
\[\begin{align}
& \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{8}=\dfrac{k}{16} \\
& \Rightarrow \dfrac{3}{16}=\dfrac{k}{16} \\
\end{align}\]
Multiplying both sides of this equation by 16, we get
$3=k$
Thus the value of k is 3.
Note: The formula \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \] should be used carefully and works only for those values of $\theta $ for which the value of $\sin 3\theta $ is known to us. Derivation of the formula can be found by using the formula $\sin A\sin B=\dfrac{1}{2}\left( \cos \left( A-B \right)-\cos \left( A+B \right) \right)$ for $A={{60}^{\circ }}-\theta $ and $B={{60}^{\circ }}+\theta $.
Thus, the expression becomes
\[\begin{align}
& \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( {{60}^{\circ }}-\theta -\left( {{60}^{\circ }}+\theta \right) \right)-\cos \left( {{60}^{\circ }}-\theta +{{60}^{\circ }}+\theta \right) \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( -2\theta \right)-\cos \left( {{120}^{\circ }} \right) \right) \right) \\
\end{align}\]
Now, we know that $\cos \left( -\theta \right)=\cos \theta $ and $\cos {{120}^{\circ }}=\dfrac{-1}{2}$. Using these values in the above equation, we get
\[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( 2\theta \right)+\dfrac{1}{2} \right) \right)\]
In this equation, substitute $\cos 2\theta =1-2{{\sin }^{2}}\theta $.
\[\begin{align}
& \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( 1-2{{\sin }^{2}}\theta +\dfrac{1}{2} \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \dfrac{3}{2}-2{{\sin }^{2}}\theta \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{3}{4}-{{\sin }^{2}}\theta \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{3}{4}\sin \theta -{{\sin }^{3}}\theta \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\left( \sin \theta -4{{\sin }^{3}}\theta \right) \\
\end{align}\]
Now we know that \[\sin \theta -4{{\sin }^{3}}\theta =\sin 3\theta \]. Thus, the above expression becomes
\[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \]
This is the required proof. It is advisable to memorize this result as it is very helpful in solving questions where the expression can be reduced to the form of \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\].
Last updated date: 04th Jun 2023
•
Total views: 328.2k
•
Views today: 2.85k
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
