
Find the value of k, if $\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\dfrac{k}{16}$.
Answer
606.9k+ views
Hint: Write the given expression on LHS as \[\sin {{60}^{\circ }}\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)\]. Use the value of $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and then use the formula \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \] with $\theta ={{20}^{\circ }}$. This gives the value of the expression on LHS, and a linear equation in k. Solve the linear equation to find the value of k.
Complete step-by-step answer:
We have been given $\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}$on the LHS. We know the value of $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$. Using this value, the expression becomes,
\[\dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{80}^{\circ }}=\dfrac{k}{16}\]
Express $\sin {{40}^{\circ }}$ as $\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)$ and $\sin {{80}^{\circ }}$ as $\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)$. Thus, the expression becomes,
\[\begin{align}
& \dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{80}^{\circ }}=\dfrac{k}{16} \\
& \Rightarrow \dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{k}{16}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 1 \right) \\
\end{align}\]
The expression \[\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)\] can be written as \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\] with $\theta ={{20}^{\circ }}$.
We know that the expression \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\] can be directly found out using the formula \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \].
Thus, applying this formula to the given expression and substituting the value of $\theta ={{20}^{\circ }}$, we get
\[\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\sin \left( 3\times {{20}^{\circ }} \right)\]
\[\begin{align}
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\sin {{60}^{\circ }} \\
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\times \dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{\sqrt{3}}{8} \\
\end{align}\]
Substituting this value in equation (1), we get
\[\begin{align}
& \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{8}=\dfrac{k}{16} \\
& \Rightarrow \dfrac{3}{16}=\dfrac{k}{16} \\
\end{align}\]
Multiplying both sides of this equation by 16, we get
$3=k$
Thus the value of k is 3.
Note: The formula \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \] should be used carefully and works only for those values of $\theta $ for which the value of $\sin 3\theta $ is known to us. Derivation of the formula can be found by using the formula $\sin A\sin B=\dfrac{1}{2}\left( \cos \left( A-B \right)-\cos \left( A+B \right) \right)$ for $A={{60}^{\circ }}-\theta $ and $B={{60}^{\circ }}+\theta $.
Thus, the expression becomes
\[\begin{align}
& \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( {{60}^{\circ }}-\theta -\left( {{60}^{\circ }}+\theta \right) \right)-\cos \left( {{60}^{\circ }}-\theta +{{60}^{\circ }}+\theta \right) \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( -2\theta \right)-\cos \left( {{120}^{\circ }} \right) \right) \right) \\
\end{align}\]
Now, we know that $\cos \left( -\theta \right)=\cos \theta $ and $\cos {{120}^{\circ }}=\dfrac{-1}{2}$. Using these values in the above equation, we get
\[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( 2\theta \right)+\dfrac{1}{2} \right) \right)\]
In this equation, substitute $\cos 2\theta =1-2{{\sin }^{2}}\theta $.
\[\begin{align}
& \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( 1-2{{\sin }^{2}}\theta +\dfrac{1}{2} \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \dfrac{3}{2}-2{{\sin }^{2}}\theta \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{3}{4}-{{\sin }^{2}}\theta \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{3}{4}\sin \theta -{{\sin }^{3}}\theta \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\left( \sin \theta -4{{\sin }^{3}}\theta \right) \\
\end{align}\]
Now we know that \[\sin \theta -4{{\sin }^{3}}\theta =\sin 3\theta \]. Thus, the above expression becomes
\[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \]
This is the required proof. It is advisable to memorize this result as it is very helpful in solving questions where the expression can be reduced to the form of \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\].
Complete step-by-step answer:
We have been given $\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}$on the LHS. We know the value of $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$. Using this value, the expression becomes,
\[\dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{80}^{\circ }}=\dfrac{k}{16}\]
Express $\sin {{40}^{\circ }}$ as $\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)$ and $\sin {{80}^{\circ }}$ as $\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)$. Thus, the expression becomes,
\[\begin{align}
& \dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{80}^{\circ }}=\dfrac{k}{16} \\
& \Rightarrow \dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{k}{16}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 1 \right) \\
\end{align}\]
The expression \[\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)\] can be written as \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\] with $\theta ={{20}^{\circ }}$.
We know that the expression \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\] can be directly found out using the formula \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \].
Thus, applying this formula to the given expression and substituting the value of $\theta ={{20}^{\circ }}$, we get
\[\sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\sin \left( 3\times {{20}^{\circ }} \right)\]
\[\begin{align}
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\sin {{60}^{\circ }} \\
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{1}{4}\times \dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin {{20}^{\circ }}\sin \left( {{60}^{\circ }}-{{20}^{\circ }} \right)\sin \left( {{60}^{\circ }}+{{20}^{\circ }} \right)=\dfrac{\sqrt{3}}{8} \\
\end{align}\]
Substituting this value in equation (1), we get
\[\begin{align}
& \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{8}=\dfrac{k}{16} \\
& \Rightarrow \dfrac{3}{16}=\dfrac{k}{16} \\
\end{align}\]
Multiplying both sides of this equation by 16, we get
$3=k$
Thus the value of k is 3.
Note: The formula \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \] should be used carefully and works only for those values of $\theta $ for which the value of $\sin 3\theta $ is known to us. Derivation of the formula can be found by using the formula $\sin A\sin B=\dfrac{1}{2}\left( \cos \left( A-B \right)-\cos \left( A+B \right) \right)$ for $A={{60}^{\circ }}-\theta $ and $B={{60}^{\circ }}+\theta $.
Thus, the expression becomes
\[\begin{align}
& \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( {{60}^{\circ }}-\theta -\left( {{60}^{\circ }}+\theta \right) \right)-\cos \left( {{60}^{\circ }}-\theta +{{60}^{\circ }}+\theta \right) \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( -2\theta \right)-\cos \left( {{120}^{\circ }} \right) \right) \right) \\
\end{align}\]
Now, we know that $\cos \left( -\theta \right)=\cos \theta $ and $\cos {{120}^{\circ }}=\dfrac{-1}{2}$. Using these values in the above equation, we get
\[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \cos \left( 2\theta \right)+\dfrac{1}{2} \right) \right)\]
In this equation, substitute $\cos 2\theta =1-2{{\sin }^{2}}\theta $.
\[\begin{align}
& \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( 1-2{{\sin }^{2}}\theta +\dfrac{1}{2} \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{1}{2}\left( \dfrac{3}{2}-2{{\sin }^{2}}\theta \right) \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\left( \sin \theta \right)\cdot \left( \dfrac{3}{4}-{{\sin }^{2}}\theta \right) \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{3}{4}\sin \theta -{{\sin }^{3}}\theta \\
& \Rightarrow \sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\left( \sin \theta -4{{\sin }^{3}}\theta \right) \\
\end{align}\]
Now we know that \[\sin \theta -4{{\sin }^{3}}\theta =\sin 3\theta \]. Thus, the above expression becomes
\[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta \]
This is the required proof. It is advisable to memorize this result as it is very helpful in solving questions where the expression can be reduced to the form of \[\sin \theta \sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

