
Find the value of k for which the simultaneous equation x + y + z = 3; x + 2y + 3z = 4 and x + 4y + kz = 6 will not have a unique solution.
A.0
B.5
C.6
D.7
Answer
606k+ views
Hint: We need to have a basic idea of solving the system of equations in three variables to solve this problem. Use the determinant of a matrix to solve this problem.
The given equations are
x + y + z = 3
x + 2y + 3z = 4
x + 4y + kz = 6
we can represent the given system of equations in matrix form using the coefficients of the variables.
$ \Rightarrow \left| {\matrix
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & k \\
\endmatrix } \right|$
The given system of equations will be consistent with unique solution, when
$\left| {\matrix
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & k \\
\endmatrix } \right| \ne 0$
Finding the determinant of the above matrix, we get
$ \Rightarrow 1(2k - 12) + 1(3 - k) + 1(4 - 2) \ne 0$
On simplification,
$ \Rightarrow k - 12 + 3 + 2 \ne 0$
$ \Rightarrow k - 7 \ne 0$
$ \Rightarrow k \ne 7$
For k = 7, the given simultaneous equations will not have a unique solution. Hence option D is the correct answer.
Note:
To solve a system of equations we have different methods available: substitution method, graph method, elimination method. The system of equations in three variables are either dependent, independent or inconsistent. Dependent systems of equations have an infinite number of solutions. Independent system of equations has only one solution. Inconsistent systems of equations have no solution. If the determinant of a matrix is zero it represents a linearly dependent system.
The given equations are
x + y + z = 3
x + 2y + 3z = 4
x + 4y + kz = 6
we can represent the given system of equations in matrix form using the coefficients of the variables.
$ \Rightarrow \left| {\matrix
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & k \\
\endmatrix } \right|$
The given system of equations will be consistent with unique solution, when
$\left| {\matrix
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & k \\
\endmatrix } \right| \ne 0$
Finding the determinant of the above matrix, we get
$ \Rightarrow 1(2k - 12) + 1(3 - k) + 1(4 - 2) \ne 0$
On simplification,
$ \Rightarrow k - 12 + 3 + 2 \ne 0$
$ \Rightarrow k - 7 \ne 0$
$ \Rightarrow k \ne 7$
For k = 7, the given simultaneous equations will not have a unique solution. Hence option D is the correct answer.
Note:
To solve a system of equations we have different methods available: substitution method, graph method, elimination method. The system of equations in three variables are either dependent, independent or inconsistent. Dependent systems of equations have an infinite number of solutions. Independent system of equations has only one solution. Inconsistent systems of equations have no solution. If the determinant of a matrix is zero it represents a linearly dependent system.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

