
Find the value of integration $\int\limits_0^{\frac{\pi }{2}} {\sin x\cos xdx} .$
Answer
622.8k+ views
Hint: Use formula $\sin 2x = 2\sin x\cos x.$
Let the value of integration be $I.$
$ \Rightarrow I = \int\limits_0^{\frac{\pi }{2}} {\sin x\cos xdx} ,$
Dividing and multiplying by $2$ on right hand side, we’ll get:
$ \Rightarrow I = \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {2\sin x\cos xdx} ,$
We know that $2\sin x\cos x = \sin 2x$, using this we’ll get:
$ \Rightarrow I = \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {\sin 2xdx} ,$
And we also know that, \[\int {\sin 2xdx = } - \frac{{\cos 2x}}{2} + C\], using this we will get:
\[
\Rightarrow I = \frac{1}{2}\left[ { - \frac{{\cos 2x}}{2}} \right]_0^{\frac{\pi }{2}}, \\
\Rightarrow I = - \frac{1}{4}\left[ {\cos 2x} \right]_0^{\frac{\pi }{2}} \\
\]
Putting limit of integration, we’ll get:
$
\Rightarrow I = - \frac{1}{4}\left[ {\cos \pi - \cos 0} \right], \\
\Rightarrow I = - \frac{1}{4}( - 1 - 1) = - \frac{1}{4} \times ( - 2), \\
\Rightarrow I = \frac{1}{2}. \\
$
Thus, the value of integration is $\frac{1}{2}.$
Note: We will ignore the constant of integration while putting the limit because it is a definite integration.
Let the value of integration be $I.$
$ \Rightarrow I = \int\limits_0^{\frac{\pi }{2}} {\sin x\cos xdx} ,$
Dividing and multiplying by $2$ on right hand side, we’ll get:
$ \Rightarrow I = \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {2\sin x\cos xdx} ,$
We know that $2\sin x\cos x = \sin 2x$, using this we’ll get:
$ \Rightarrow I = \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {\sin 2xdx} ,$
And we also know that, \[\int {\sin 2xdx = } - \frac{{\cos 2x}}{2} + C\], using this we will get:
\[
\Rightarrow I = \frac{1}{2}\left[ { - \frac{{\cos 2x}}{2}} \right]_0^{\frac{\pi }{2}}, \\
\Rightarrow I = - \frac{1}{4}\left[ {\cos 2x} \right]_0^{\frac{\pi }{2}} \\
\]
Putting limit of integration, we’ll get:
$
\Rightarrow I = - \frac{1}{4}\left[ {\cos \pi - \cos 0} \right], \\
\Rightarrow I = - \frac{1}{4}( - 1 - 1) = - \frac{1}{4} \times ( - 2), \\
\Rightarrow I = \frac{1}{2}. \\
$
Thus, the value of integration is $\frac{1}{2}.$
Note: We will ignore the constant of integration while putting the limit because it is a definite integration.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

