# Find the value of integration $\int\limits_0^{\frac{\pi }{2}} {\sin x\cos xdx} .$

Answer

Verified

365.7k+ views

Hint: Use formula $\sin 2x = 2\sin x\cos x.$

Let the value of integration be $I.$

$ \Rightarrow I = \int\limits_0^{\frac{\pi }{2}} {\sin x\cos xdx} ,$

Dividing and multiplying by $2$ on right hand side, we’ll get:

$ \Rightarrow I = \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {2\sin x\cos xdx} ,$

We know that $2\sin x\cos x = \sin 2x$, using this we’ll get:

$ \Rightarrow I = \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {\sin 2xdx} ,$

And we also know that, \[\int {\sin 2xdx = } - \frac{{\cos 2x}}{2} + C\], using this we will get:

\[

\Rightarrow I = \frac{1}{2}\left[ { - \frac{{\cos 2x}}{2}} \right]_0^{\frac{\pi }{2}}, \\

\Rightarrow I = - \frac{1}{4}\left[ {\cos 2x} \right]_0^{\frac{\pi }{2}} \\

\]

Putting limit of integration, we’ll get:

$

\Rightarrow I = - \frac{1}{4}\left[ {\cos \pi - \cos 0} \right], \\

\Rightarrow I = - \frac{1}{4}( - 1 - 1) = - \frac{1}{4} \times ( - 2), \\

\Rightarrow I = \frac{1}{2}. \\

$

Thus, the value of integration is $\frac{1}{2}.$

Note: We will ignore the constant of integration while putting the limit because it is a definite integration.

Let the value of integration be $I.$

$ \Rightarrow I = \int\limits_0^{\frac{\pi }{2}} {\sin x\cos xdx} ,$

Dividing and multiplying by $2$ on right hand side, we’ll get:

$ \Rightarrow I = \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {2\sin x\cos xdx} ,$

We know that $2\sin x\cos x = \sin 2x$, using this we’ll get:

$ \Rightarrow I = \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {\sin 2xdx} ,$

And we also know that, \[\int {\sin 2xdx = } - \frac{{\cos 2x}}{2} + C\], using this we will get:

\[

\Rightarrow I = \frac{1}{2}\left[ { - \frac{{\cos 2x}}{2}} \right]_0^{\frac{\pi }{2}}, \\

\Rightarrow I = - \frac{1}{4}\left[ {\cos 2x} \right]_0^{\frac{\pi }{2}} \\

\]

Putting limit of integration, we’ll get:

$

\Rightarrow I = - \frac{1}{4}\left[ {\cos \pi - \cos 0} \right], \\

\Rightarrow I = - \frac{1}{4}( - 1 - 1) = - \frac{1}{4} \times ( - 2), \\

\Rightarrow I = \frac{1}{2}. \\

$

Thus, the value of integration is $\frac{1}{2}.$

Note: We will ignore the constant of integration while putting the limit because it is a definite integration.

Last updated date: 29th Sep 2023

•

Total views: 365.7k

•

Views today: 5.65k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

An alternating current can be produced by A a transformer class 12 physics CBSE

What is the value of 01+23+45+67++1617+1819+20 class 11 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers