
Find the value of \[\int {\dfrac{{{e^x}}}{x}(x\log x + 1)dx} \].
(a). \[\dfrac{{{e^x}}}{x} + C\]
(b). \[x{e^x}\log \left| x \right| + C\]
(c). \[{e^x}\log \left| x \right| + C\]
(d). \[x\left( {{e^x} + \log \left| x \right|} \right) + C\]
(e). \[x{e^x} + \log \left| x \right| + C\]
Answer
612.6k+ views
Hint: Separate the integrals into two terms separated by an addition. Simplify the first term using integration by parts and some terms will get cancelled to give the final answer.
Complete step-by-step answer:
The given integral has two terms separated by an addition. Let us make two integrals based on the rule of addition of integrals. Hence, we have:
\[I = \int {\dfrac{{{e^x}}}{x}(x\log x + 1)dx} \]
\[I = \int {{e^x}\log xdx + \int {\dfrac{{{e^x}}}{x}dx} } ...........(1)\]
Now, equation (1) has two parts, let's solve the first term to simplify the expression. Assign the first term to I’.
\[I' = \int {{e^x}\log xdx} \]
Let us use integration by parts to solve I’.
The formula for integration by parts is as follows:
\[\int {udv = uv - \int {vdu} } ..........(2)\]
We have, \[u = \log x\] and \[dv = {e^x}dx\]. Hence, we find du and v as follows:
Find du by differentiating u as follows:
\[du = \dfrac{1}{x}dx.........(3)\]
Find v by integrating dv. We know that integration of \[{e^x}\] is \[{e^x}\] itself.
\[\int {dv} = \int {{e^x}dx} \]
\[v = {e^x}............(4)\]
Substituting equation (3) and equation (4) in equation (5), we have:
\[\int {{e^x}\log xdx = \log \left| x \right|{e^x} - \int {\dfrac{{{e^x}}}{x}dx} } ..........(5)\]
We now substitute equation (5) back in equation (1) to get:
\[I = \log \left| x \right|{e^x} - \int {\dfrac{{{e^x}}}{x}dx} + \int {\dfrac{{{e^x}}}{x}dx} \]
We can observe that the second and the third term cancel each other. Also, we need to add the constant of integration because the integral can differ by a constant. Hence, the final expression is as follows:
\[I = {e^x}\log \left| x \right| + C\]
Hence, the correct answer is \[{e^x}\log \left| x \right| + C\].
Therefore, the correct answer is option (c).
Note: You must be careful when choosing u and v for integration by parts. A logarithmic function should be given a higher preference for u than the exponential function.
Complete step-by-step answer:
The given integral has two terms separated by an addition. Let us make two integrals based on the rule of addition of integrals. Hence, we have:
\[I = \int {\dfrac{{{e^x}}}{x}(x\log x + 1)dx} \]
\[I = \int {{e^x}\log xdx + \int {\dfrac{{{e^x}}}{x}dx} } ...........(1)\]
Now, equation (1) has two parts, let's solve the first term to simplify the expression. Assign the first term to I’.
\[I' = \int {{e^x}\log xdx} \]
Let us use integration by parts to solve I’.
The formula for integration by parts is as follows:
\[\int {udv = uv - \int {vdu} } ..........(2)\]
We have, \[u = \log x\] and \[dv = {e^x}dx\]. Hence, we find du and v as follows:
Find du by differentiating u as follows:
\[du = \dfrac{1}{x}dx.........(3)\]
Find v by integrating dv. We know that integration of \[{e^x}\] is \[{e^x}\] itself.
\[\int {dv} = \int {{e^x}dx} \]
\[v = {e^x}............(4)\]
Substituting equation (3) and equation (4) in equation (5), we have:
\[\int {{e^x}\log xdx = \log \left| x \right|{e^x} - \int {\dfrac{{{e^x}}}{x}dx} } ..........(5)\]
We now substitute equation (5) back in equation (1) to get:
\[I = \log \left| x \right|{e^x} - \int {\dfrac{{{e^x}}}{x}dx} + \int {\dfrac{{{e^x}}}{x}dx} \]
We can observe that the second and the third term cancel each other. Also, we need to add the constant of integration because the integral can differ by a constant. Hence, the final expression is as follows:
\[I = {e^x}\log \left| x \right| + C\]
Hence, the correct answer is \[{e^x}\log \left| x \right| + C\].
Therefore, the correct answer is option (c).
Note: You must be careful when choosing u and v for integration by parts. A logarithmic function should be given a higher preference for u than the exponential function.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

