
Find the value of following limit :
$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
Answer
621.9k+ views
Hint: Try expanding the series and then observing the terms individually.
The above given term is
$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
Take the part that comes after the summation sign, or the series whose general term is given, and open the series. Doing so, we get :
$=\underset{n\to \infty }{\mathop{\lim }}\,[{{\cos }^{2n}}(-9)+{{\cos }^{2n}}(-8)+{{\cos }^{2n}}(-7)+........+{{\cos }^{2n}}(10)]$
Now, let’s see the possible values $x-10$ can have according to the lower and upper limit of the summation given. The lower limit given to us is $x=1$. Which means, that the lowest value of $x-10$ that we can have is $1-10=-9$, and since the upper limit given to us is $x=20$, the highest value of the term $x-10$ will be equal to $20-10=10$. Thus, we can notice, that as we increase the value of $x$ being substituted, the term gets bigger in value, i.e. all the terms in the series are basically ${{\cos }^{2n}}(-9),{{\cos }^{2n}}(-8),.........,{{\cos }^{2n}}(9),{{\cos }^{2n}}(10)$.
As, from these series one value that comes in between will definitely be $={{\cos }^{2n}}(0)........(i)$
The range of cos functions is $\left( -1<\cos x\le 1 \right)$.
This means that the cosine of every argument passed to the function will have its absolute value between $0$ and $1$ only.
Also, we know if increase the power until $\infty $, for any value between $0$ and $1$, the value becomes $0$, Thus, for all the terms except ${{\cos }^{2n}}(0)$, its value on putting the limit will be $0$.
Therefore, ultimately, $\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
$=0+0+0+.......+{{\cos }^{2n}}(0)+....+0+0.$
Hence, except ${{\cos }^{2n}}(0)$ all other values there are 0.
Now, come to the term ${{\cos }^{2n}}(0)$ and check the form.
$\underset{n\to \infty }{\mathop{\lim }}\,{{\left[ \cos \left( x-10 \right) \right]}^{2n}}$
Substituting $\left( x=10 \right)$, we get; ${{\left( \cos 0 \right)}^{2\infty }}\Rightarrow {{\left( 1 \right)}^{\infty }}$. As, $\left( {{1}^{\infty }}=0 \right)$, (by taking the value little <1)
Hence, 0 is the correct answer of the $\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
Note: Don’t get confused between actual and absolute values. Due to the range of the cosine function, we could say that the range of their absolute values always lies between $0$ and $1$.
The above given term is
$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
Take the part that comes after the summation sign, or the series whose general term is given, and open the series. Doing so, we get :
$=\underset{n\to \infty }{\mathop{\lim }}\,[{{\cos }^{2n}}(-9)+{{\cos }^{2n}}(-8)+{{\cos }^{2n}}(-7)+........+{{\cos }^{2n}}(10)]$
Now, let’s see the possible values $x-10$ can have according to the lower and upper limit of the summation given. The lower limit given to us is $x=1$. Which means, that the lowest value of $x-10$ that we can have is $1-10=-9$, and since the upper limit given to us is $x=20$, the highest value of the term $x-10$ will be equal to $20-10=10$. Thus, we can notice, that as we increase the value of $x$ being substituted, the term gets bigger in value, i.e. all the terms in the series are basically ${{\cos }^{2n}}(-9),{{\cos }^{2n}}(-8),.........,{{\cos }^{2n}}(9),{{\cos }^{2n}}(10)$.
As, from these series one value that comes in between will definitely be $={{\cos }^{2n}}(0)........(i)$
The range of cos functions is $\left( -1<\cos x\le 1 \right)$.
This means that the cosine of every argument passed to the function will have its absolute value between $0$ and $1$ only.
Also, we know if increase the power until $\infty $, for any value between $0$ and $1$, the value becomes $0$, Thus, for all the terms except ${{\cos }^{2n}}(0)$, its value on putting the limit will be $0$.
Therefore, ultimately, $\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
$=0+0+0+.......+{{\cos }^{2n}}(0)+....+0+0.$
Hence, except ${{\cos }^{2n}}(0)$ all other values there are 0.
Now, come to the term ${{\cos }^{2n}}(0)$ and check the form.
$\underset{n\to \infty }{\mathop{\lim }}\,{{\left[ \cos \left( x-10 \right) \right]}^{2n}}$
Substituting $\left( x=10 \right)$, we get; ${{\left( \cos 0 \right)}^{2\infty }}\Rightarrow {{\left( 1 \right)}^{\infty }}$. As, $\left( {{1}^{\infty }}=0 \right)$, (by taking the value little <1)
Hence, 0 is the correct answer of the $\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
Note: Don’t get confused between actual and absolute values. Due to the range of the cosine function, we could say that the range of their absolute values always lies between $0$ and $1$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

