
Find the value of following limit :
$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
Answer
607.2k+ views
Hint: Try expanding the series and then observing the terms individually.
The above given term is
$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
Take the part that comes after the summation sign, or the series whose general term is given, and open the series. Doing so, we get :
$=\underset{n\to \infty }{\mathop{\lim }}\,[{{\cos }^{2n}}(-9)+{{\cos }^{2n}}(-8)+{{\cos }^{2n}}(-7)+........+{{\cos }^{2n}}(10)]$
Now, let’s see the possible values $x-10$ can have according to the lower and upper limit of the summation given. The lower limit given to us is $x=1$. Which means, that the lowest value of $x-10$ that we can have is $1-10=-9$, and since the upper limit given to us is $x=20$, the highest value of the term $x-10$ will be equal to $20-10=10$. Thus, we can notice, that as we increase the value of $x$ being substituted, the term gets bigger in value, i.e. all the terms in the series are basically ${{\cos }^{2n}}(-9),{{\cos }^{2n}}(-8),.........,{{\cos }^{2n}}(9),{{\cos }^{2n}}(10)$.
As, from these series one value that comes in between will definitely be $={{\cos }^{2n}}(0)........(i)$
The range of cos functions is $\left( -1<\cos x\le 1 \right)$.
This means that the cosine of every argument passed to the function will have its absolute value between $0$ and $1$ only.
Also, we know if increase the power until $\infty $, for any value between $0$ and $1$, the value becomes $0$, Thus, for all the terms except ${{\cos }^{2n}}(0)$, its value on putting the limit will be $0$.
Therefore, ultimately, $\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
$=0+0+0+.......+{{\cos }^{2n}}(0)+....+0+0.$
Hence, except ${{\cos }^{2n}}(0)$ all other values there are 0.
Now, come to the term ${{\cos }^{2n}}(0)$ and check the form.
$\underset{n\to \infty }{\mathop{\lim }}\,{{\left[ \cos \left( x-10 \right) \right]}^{2n}}$
Substituting $\left( x=10 \right)$, we get; ${{\left( \cos 0 \right)}^{2\infty }}\Rightarrow {{\left( 1 \right)}^{\infty }}$. As, $\left( {{1}^{\infty }}=0 \right)$, (by taking the value little <1)
Hence, 0 is the correct answer of the $\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
Note: Don’t get confused between actual and absolute values. Due to the range of the cosine function, we could say that the range of their absolute values always lies between $0$ and $1$.
The above given term is
$\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
Take the part that comes after the summation sign, or the series whose general term is given, and open the series. Doing so, we get :
$=\underset{n\to \infty }{\mathop{\lim }}\,[{{\cos }^{2n}}(-9)+{{\cos }^{2n}}(-8)+{{\cos }^{2n}}(-7)+........+{{\cos }^{2n}}(10)]$
Now, let’s see the possible values $x-10$ can have according to the lower and upper limit of the summation given. The lower limit given to us is $x=1$. Which means, that the lowest value of $x-10$ that we can have is $1-10=-9$, and since the upper limit given to us is $x=20$, the highest value of the term $x-10$ will be equal to $20-10=10$. Thus, we can notice, that as we increase the value of $x$ being substituted, the term gets bigger in value, i.e. all the terms in the series are basically ${{\cos }^{2n}}(-9),{{\cos }^{2n}}(-8),.........,{{\cos }^{2n}}(9),{{\cos }^{2n}}(10)$.
As, from these series one value that comes in between will definitely be $={{\cos }^{2n}}(0)........(i)$
The range of cos functions is $\left( -1<\cos x\le 1 \right)$.
This means that the cosine of every argument passed to the function will have its absolute value between $0$ and $1$ only.
Also, we know if increase the power until $\infty $, for any value between $0$ and $1$, the value becomes $0$, Thus, for all the terms except ${{\cos }^{2n}}(0)$, its value on putting the limit will be $0$.
Therefore, ultimately, $\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
$=0+0+0+.......+{{\cos }^{2n}}(0)+....+0+0.$
Hence, except ${{\cos }^{2n}}(0)$ all other values there are 0.
Now, come to the term ${{\cos }^{2n}}(0)$ and check the form.
$\underset{n\to \infty }{\mathop{\lim }}\,{{\left[ \cos \left( x-10 \right) \right]}^{2n}}$
Substituting $\left( x=10 \right)$, we get; ${{\left( \cos 0 \right)}^{2\infty }}\Rightarrow {{\left( 1 \right)}^{\infty }}$. As, $\left( {{1}^{\infty }}=0 \right)$, (by taking the value little <1)
Hence, 0 is the correct answer of the $\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{x=1}^{20}{{{\cos }^{2n}}(x-10)}$
Note: Don’t get confused between actual and absolute values. Due to the range of the cosine function, we could say that the range of their absolute values always lies between $0$ and $1$.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

