
Find the value of Expression $x + \dfrac{1}{x}$ if $x = 2\sqrt 6 + 5$
Answer
621.6k+ views
Hint: Put the value of $x$ directly in the given expression and find out its value.cylindrical portion of the pillar is conical
Given, $x = 2\sqrt 6 + 5$ and we have to find the value of $x + \dfrac{1}{x}$.
Let $x + \dfrac{1}{x} = y,$then we have:
$ \Rightarrow y = \dfrac{{{x^2} + 1}}{x}$
Now, putting the value of$x$, we’ll get:
$ \Rightarrow y = \dfrac{{{{(2\sqrt 6 + 5)}^2} + 1}}{{(2\sqrt 6 + 5)}}$
We know that${(a + b)^2} = {a^2} + {b^2} + 2ab$, using this formula we’ll get:
$
\Rightarrow y = \dfrac{{\left[ {{{(2\sqrt 6 )}^2} + {5^2} + 2 \times 2\sqrt 6 \times 5} \right] + 1}}{{(2\sqrt 6 + 5)}}, \\
\Rightarrow y = \dfrac{{24 + 25 + 20\sqrt 6 + 1}}{{(2\sqrt 6 + 5)}}, \\
\Rightarrow y = \dfrac{{50 + 20\sqrt 6 }}{{(2\sqrt 6 + 5)}}, \\
\Rightarrow y = \dfrac{{10\left( {2\sqrt 6 + 5} \right)}}{{(2\sqrt 6 + 5)}}, \\
\Rightarrow y = 10 \\
$
Thus, the required value of $x + \dfrac{1}{x} $ is $10$.
Note: If we are getting an irrational number in a denominator in any expression, then we can convert it into a rational number by rationalizing it. In this process we multiply both numerator and denominator by the conjugate of the denominator.
Given, $x = 2\sqrt 6 + 5$ and we have to find the value of $x + \dfrac{1}{x}$.
Let $x + \dfrac{1}{x} = y,$then we have:
$ \Rightarrow y = \dfrac{{{x^2} + 1}}{x}$
Now, putting the value of$x$, we’ll get:
$ \Rightarrow y = \dfrac{{{{(2\sqrt 6 + 5)}^2} + 1}}{{(2\sqrt 6 + 5)}}$
We know that${(a + b)^2} = {a^2} + {b^2} + 2ab$, using this formula we’ll get:
$
\Rightarrow y = \dfrac{{\left[ {{{(2\sqrt 6 )}^2} + {5^2} + 2 \times 2\sqrt 6 \times 5} \right] + 1}}{{(2\sqrt 6 + 5)}}, \\
\Rightarrow y = \dfrac{{24 + 25 + 20\sqrt 6 + 1}}{{(2\sqrt 6 + 5)}}, \\
\Rightarrow y = \dfrac{{50 + 20\sqrt 6 }}{{(2\sqrt 6 + 5)}}, \\
\Rightarrow y = \dfrac{{10\left( {2\sqrt 6 + 5} \right)}}{{(2\sqrt 6 + 5)}}, \\
\Rightarrow y = 10 \\
$
Thus, the required value of $x + \dfrac{1}{x} $ is $10$.
Note: If we are getting an irrational number in a denominator in any expression, then we can convert it into a rational number by rationalizing it. In this process we multiply both numerator and denominator by the conjugate of the denominator.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

