Find the value of $\dfrac{\sin \left( -{{660}^{\circ }} \right)\tan \left( {{1050}^{\circ }} \right)\sec \left( -{{420}^{\circ }} \right)}{\cos \left( {{225}^{\circ }} \right)\csc \left( {{315}^{\circ }} \right)\cos \left( {{510}^{\circ }} \right)}$?
(a) $\dfrac{\sqrt{3}}{4}$
(b) $\dfrac{\sqrt{3}}{2}$
(c) $\dfrac{2}{\sqrt{3}}$
(d) $\dfrac{4}{\sqrt{3}}$
Answer
280.5k+ views
Hint: Assume the given expression as E and use the relations $\sin \left( -x \right)=-\sin x$ and $\sec \left( -x \right)=\sec x$ to make the angles of all the trigonometric ratios positive. Now, convert all the angles from degrees into radians by multiplying then with $\dfrac{\pi }{{{180}^{\circ }}}$. Use the sign convention of the given trigonometric functions in certain quadrants and simplify the expression by substituting the values of trigonometric ratios of special angles to get the answer.
Complete step by step answer:
Here we have been provided with the expression $\dfrac{\sin \left( -{{660}^{\circ }} \right)\tan \left( {{1050}^{\circ }} \right)\sec \left( -{{420}^{\circ }} \right)}{\cos \left( {{225}^{\circ }} \right)\csc \left( {{315}^{\circ }} \right)\cos \left( {{510}^{\circ }} \right)}$ and we have to find its value. Let us assume the given expression as E, so we have,
$\Rightarrow E=\dfrac{\sin \left( -{{660}^{\circ }} \right)\tan \left( {{1050}^{\circ }} \right)\sec \left( -{{420}^{\circ }} \right)}{\cos \left( {{225}^{\circ }} \right)\csc \left( {{315}^{\circ }} \right)\cos \left( {{510}^{\circ }} \right)}$
Using the formulas $\sin \left( -x \right)=-\sin x$ and $\sec \left( -x \right)=\sec x$ to make the angles positive we get,
$\Rightarrow E=-\left[ \dfrac{\sin \left( {{660}^{\circ }} \right)\tan \left( {{1050}^{\circ }} \right)\sec \left( {{420}^{\circ }} \right)}{\cos \left( {{225}^{\circ }} \right)\csc \left( {{315}^{\circ }} \right)\cos \left( {{510}^{\circ }} \right)} \right]$
Converting all the angles from degrees into radians we by multiplying them with $\dfrac{\pi }{{{180}^{\circ }}}$ we get,
\[\Rightarrow E=-\left[ \dfrac{\sin \left( \dfrac{11\pi }{3} \right)\tan \left( \dfrac{35\pi }{6} \right)\sec \left( \dfrac{7\pi }{3} \right)}{\cos \left( \dfrac{5\pi }{4} \right)\csc \left( \dfrac{7\pi }{4} \right)\cos \left( \dfrac{17\pi }{6} \right)} \right]\]
Here we can write the angles of different trigonometric function present above as the sum or difference of two angles, so we get,
\[\Rightarrow E=-\left[ \dfrac{\sin \left( 4\pi -\dfrac{\pi }{3} \right)\tan \left( 6\pi -\dfrac{\pi }{6} \right)\sec \left( 2\pi +\dfrac{\pi }{3} \right)}{\cos \left( \pi +\dfrac{\pi }{4} \right)\csc \left( 2\pi -\dfrac{\pi }{4} \right)\cos \left( 3\pi -\dfrac{\pi }{6} \right)} \right]\]
We know that in the first quadrant all the trigonometric functions are positive, in the second quadrant only sine and cosecant function is positive, in the third quadrant only tangent and cotangent function is positive and in the fourth quadrant only cosine and secant function is positive. Therefore the above expression can be simplified as: -
\[\begin{align}
& \Rightarrow E=-\left[ \dfrac{\left( -\sin \left( \dfrac{\pi }{3} \right) \right)\left( -\tan \left( \dfrac{\pi }{6} \right) \right)\sec \left( \dfrac{\pi }{3} \right)}{\left( -\cos \left( \dfrac{\pi }{4} \right) \right)\left( -\csc \left( \dfrac{\pi }{4} \right) \right)\left( -\cos \left( \dfrac{\pi }{6} \right) \right)} \right] \\
& \Rightarrow E=\left[ \dfrac{\sin \left( \dfrac{\pi }{3} \right)\tan \left( \dfrac{\pi }{6} \right)\sec \left( \dfrac{\pi }{3} \right)}{\cos \left( \dfrac{\pi }{4} \right)\csc \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{6} \right)} \right] \\
\end{align}\]
Using and substituting the values $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$, $\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}$, $\sec \dfrac{\pi }{3}=2$, $\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$, $\csc \dfrac{\pi }{4}=\sqrt{2}$ and $\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}$ in the above expression we get,
\[\begin{align}
& \Rightarrow E=\left[ \dfrac{\dfrac{\sqrt{3}}{2}\times \dfrac{1}{\sqrt{3}}\times 2}{\dfrac{1}{\sqrt{2}}\times \sqrt{2}\times \dfrac{\sqrt{3}}{2}} \right] \\
& \therefore E=\dfrac{2}{\sqrt{3}} \\
\end{align}\]
So, the correct answer is “Option c”.
Note: Note that the only reason to convert the given angles from degrees into radians is that in higher classes we use the notation of radian and all the formulas are written in terms of $\pi $. You must remember the signs of all the trigonometric functions in different quadrants otherwise you may make sign mistakes while solving. Also, remember the values of all the functions for certain special angles like $\dfrac{\pi }{6}$, $\dfrac{\pi }{4}$, $\dfrac{\pi }{3}$, $\dfrac{\pi }{2}$ etc.
Complete step by step answer:
Here we have been provided with the expression $\dfrac{\sin \left( -{{660}^{\circ }} \right)\tan \left( {{1050}^{\circ }} \right)\sec \left( -{{420}^{\circ }} \right)}{\cos \left( {{225}^{\circ }} \right)\csc \left( {{315}^{\circ }} \right)\cos \left( {{510}^{\circ }} \right)}$ and we have to find its value. Let us assume the given expression as E, so we have,
$\Rightarrow E=\dfrac{\sin \left( -{{660}^{\circ }} \right)\tan \left( {{1050}^{\circ }} \right)\sec \left( -{{420}^{\circ }} \right)}{\cos \left( {{225}^{\circ }} \right)\csc \left( {{315}^{\circ }} \right)\cos \left( {{510}^{\circ }} \right)}$
Using the formulas $\sin \left( -x \right)=-\sin x$ and $\sec \left( -x \right)=\sec x$ to make the angles positive we get,
$\Rightarrow E=-\left[ \dfrac{\sin \left( {{660}^{\circ }} \right)\tan \left( {{1050}^{\circ }} \right)\sec \left( {{420}^{\circ }} \right)}{\cos \left( {{225}^{\circ }} \right)\csc \left( {{315}^{\circ }} \right)\cos \left( {{510}^{\circ }} \right)} \right]$
Converting all the angles from degrees into radians we by multiplying them with $\dfrac{\pi }{{{180}^{\circ }}}$ we get,
\[\Rightarrow E=-\left[ \dfrac{\sin \left( \dfrac{11\pi }{3} \right)\tan \left( \dfrac{35\pi }{6} \right)\sec \left( \dfrac{7\pi }{3} \right)}{\cos \left( \dfrac{5\pi }{4} \right)\csc \left( \dfrac{7\pi }{4} \right)\cos \left( \dfrac{17\pi }{6} \right)} \right]\]
Here we can write the angles of different trigonometric function present above as the sum or difference of two angles, so we get,
\[\Rightarrow E=-\left[ \dfrac{\sin \left( 4\pi -\dfrac{\pi }{3} \right)\tan \left( 6\pi -\dfrac{\pi }{6} \right)\sec \left( 2\pi +\dfrac{\pi }{3} \right)}{\cos \left( \pi +\dfrac{\pi }{4} \right)\csc \left( 2\pi -\dfrac{\pi }{4} \right)\cos \left( 3\pi -\dfrac{\pi }{6} \right)} \right]\]
We know that in the first quadrant all the trigonometric functions are positive, in the second quadrant only sine and cosecant function is positive, in the third quadrant only tangent and cotangent function is positive and in the fourth quadrant only cosine and secant function is positive. Therefore the above expression can be simplified as: -
\[\begin{align}
& \Rightarrow E=-\left[ \dfrac{\left( -\sin \left( \dfrac{\pi }{3} \right) \right)\left( -\tan \left( \dfrac{\pi }{6} \right) \right)\sec \left( \dfrac{\pi }{3} \right)}{\left( -\cos \left( \dfrac{\pi }{4} \right) \right)\left( -\csc \left( \dfrac{\pi }{4} \right) \right)\left( -\cos \left( \dfrac{\pi }{6} \right) \right)} \right] \\
& \Rightarrow E=\left[ \dfrac{\sin \left( \dfrac{\pi }{3} \right)\tan \left( \dfrac{\pi }{6} \right)\sec \left( \dfrac{\pi }{3} \right)}{\cos \left( \dfrac{\pi }{4} \right)\csc \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{6} \right)} \right] \\
\end{align}\]
Using and substituting the values $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$, $\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}$, $\sec \dfrac{\pi }{3}=2$, $\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$, $\csc \dfrac{\pi }{4}=\sqrt{2}$ and $\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}$ in the above expression we get,
\[\begin{align}
& \Rightarrow E=\left[ \dfrac{\dfrac{\sqrt{3}}{2}\times \dfrac{1}{\sqrt{3}}\times 2}{\dfrac{1}{\sqrt{2}}\times \sqrt{2}\times \dfrac{\sqrt{3}}{2}} \right] \\
& \therefore E=\dfrac{2}{\sqrt{3}} \\
\end{align}\]
So, the correct answer is “Option c”.
Note: Note that the only reason to convert the given angles from degrees into radians is that in higher classes we use the notation of radian and all the formulas are written in terms of $\pi $. You must remember the signs of all the trigonometric functions in different quadrants otherwise you may make sign mistakes while solving. Also, remember the values of all the functions for certain special angles like $\dfrac{\pi }{6}$, $\dfrac{\pi }{4}$, $\dfrac{\pi }{3}$, $\dfrac{\pi }{2}$ etc.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Which planet is known as the red planet aMercury bMars class 6 social science CBSE

Which state has the longest coastline in India A Tamil class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE
