Answer
Verified
382.5k+ views
Hint: Assume the given expression as E and use the relations $\sin \left( -x \right)=-\sin x$ and $\sec \left( -x \right)=\sec x$ to make the angles of all the trigonometric ratios positive. Now, convert all the angles from degrees into radians by multiplying then with $\dfrac{\pi }{{{180}^{\circ }}}$. Use the sign convention of the given trigonometric functions in certain quadrants and simplify the expression by substituting the values of trigonometric ratios of special angles to get the answer.
Complete step by step answer:
Here we have been provided with the expression $\dfrac{\sin \left( -{{660}^{\circ }} \right)\tan \left( {{1050}^{\circ }} \right)\sec \left( -{{420}^{\circ }} \right)}{\cos \left( {{225}^{\circ }} \right)\csc \left( {{315}^{\circ }} \right)\cos \left( {{510}^{\circ }} \right)}$ and we have to find its value. Let us assume the given expression as E, so we have,
$\Rightarrow E=\dfrac{\sin \left( -{{660}^{\circ }} \right)\tan \left( {{1050}^{\circ }} \right)\sec \left( -{{420}^{\circ }} \right)}{\cos \left( {{225}^{\circ }} \right)\csc \left( {{315}^{\circ }} \right)\cos \left( {{510}^{\circ }} \right)}$
Using the formulas $\sin \left( -x \right)=-\sin x$ and $\sec \left( -x \right)=\sec x$ to make the angles positive we get,
$\Rightarrow E=-\left[ \dfrac{\sin \left( {{660}^{\circ }} \right)\tan \left( {{1050}^{\circ }} \right)\sec \left( {{420}^{\circ }} \right)}{\cos \left( {{225}^{\circ }} \right)\csc \left( {{315}^{\circ }} \right)\cos \left( {{510}^{\circ }} \right)} \right]$
Converting all the angles from degrees into radians we by multiplying them with $\dfrac{\pi }{{{180}^{\circ }}}$ we get,
\[\Rightarrow E=-\left[ \dfrac{\sin \left( \dfrac{11\pi }{3} \right)\tan \left( \dfrac{35\pi }{6} \right)\sec \left( \dfrac{7\pi }{3} \right)}{\cos \left( \dfrac{5\pi }{4} \right)\csc \left( \dfrac{7\pi }{4} \right)\cos \left( \dfrac{17\pi }{6} \right)} \right]\]
Here we can write the angles of different trigonometric function present above as the sum or difference of two angles, so we get,
\[\Rightarrow E=-\left[ \dfrac{\sin \left( 4\pi -\dfrac{\pi }{3} \right)\tan \left( 6\pi -\dfrac{\pi }{6} \right)\sec \left( 2\pi +\dfrac{\pi }{3} \right)}{\cos \left( \pi +\dfrac{\pi }{4} \right)\csc \left( 2\pi -\dfrac{\pi }{4} \right)\cos \left( 3\pi -\dfrac{\pi }{6} \right)} \right]\]
We know that in the first quadrant all the trigonometric functions are positive, in the second quadrant only sine and cosecant function is positive, in the third quadrant only tangent and cotangent function is positive and in the fourth quadrant only cosine and secant function is positive. Therefore the above expression can be simplified as: -
\[\begin{align}
& \Rightarrow E=-\left[ \dfrac{\left( -\sin \left( \dfrac{\pi }{3} \right) \right)\left( -\tan \left( \dfrac{\pi }{6} \right) \right)\sec \left( \dfrac{\pi }{3} \right)}{\left( -\cos \left( \dfrac{\pi }{4} \right) \right)\left( -\csc \left( \dfrac{\pi }{4} \right) \right)\left( -\cos \left( \dfrac{\pi }{6} \right) \right)} \right] \\
& \Rightarrow E=\left[ \dfrac{\sin \left( \dfrac{\pi }{3} \right)\tan \left( \dfrac{\pi }{6} \right)\sec \left( \dfrac{\pi }{3} \right)}{\cos \left( \dfrac{\pi }{4} \right)\csc \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{6} \right)} \right] \\
\end{align}\]
Using and substituting the values $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$, $\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}$, $\sec \dfrac{\pi }{3}=2$, $\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$, $\csc \dfrac{\pi }{4}=\sqrt{2}$ and $\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}$ in the above expression we get,
\[\begin{align}
& \Rightarrow E=\left[ \dfrac{\dfrac{\sqrt{3}}{2}\times \dfrac{1}{\sqrt{3}}\times 2}{\dfrac{1}{\sqrt{2}}\times \sqrt{2}\times \dfrac{\sqrt{3}}{2}} \right] \\
& \therefore E=\dfrac{2}{\sqrt{3}} \\
\end{align}\]
So, the correct answer is “Option c”.
Note: Note that the only reason to convert the given angles from degrees into radians is that in higher classes we use the notation of radian and all the formulas are written in terms of $\pi $. You must remember the signs of all the trigonometric functions in different quadrants otherwise you may make sign mistakes while solving. Also, remember the values of all the functions for certain special angles like $\dfrac{\pi }{6}$, $\dfrac{\pi }{4}$, $\dfrac{\pi }{3}$, $\dfrac{\pi }{2}$ etc.
Complete step by step answer:
Here we have been provided with the expression $\dfrac{\sin \left( -{{660}^{\circ }} \right)\tan \left( {{1050}^{\circ }} \right)\sec \left( -{{420}^{\circ }} \right)}{\cos \left( {{225}^{\circ }} \right)\csc \left( {{315}^{\circ }} \right)\cos \left( {{510}^{\circ }} \right)}$ and we have to find its value. Let us assume the given expression as E, so we have,
$\Rightarrow E=\dfrac{\sin \left( -{{660}^{\circ }} \right)\tan \left( {{1050}^{\circ }} \right)\sec \left( -{{420}^{\circ }} \right)}{\cos \left( {{225}^{\circ }} \right)\csc \left( {{315}^{\circ }} \right)\cos \left( {{510}^{\circ }} \right)}$
Using the formulas $\sin \left( -x \right)=-\sin x$ and $\sec \left( -x \right)=\sec x$ to make the angles positive we get,
$\Rightarrow E=-\left[ \dfrac{\sin \left( {{660}^{\circ }} \right)\tan \left( {{1050}^{\circ }} \right)\sec \left( {{420}^{\circ }} \right)}{\cos \left( {{225}^{\circ }} \right)\csc \left( {{315}^{\circ }} \right)\cos \left( {{510}^{\circ }} \right)} \right]$
Converting all the angles from degrees into radians we by multiplying them with $\dfrac{\pi }{{{180}^{\circ }}}$ we get,
\[\Rightarrow E=-\left[ \dfrac{\sin \left( \dfrac{11\pi }{3} \right)\tan \left( \dfrac{35\pi }{6} \right)\sec \left( \dfrac{7\pi }{3} \right)}{\cos \left( \dfrac{5\pi }{4} \right)\csc \left( \dfrac{7\pi }{4} \right)\cos \left( \dfrac{17\pi }{6} \right)} \right]\]
Here we can write the angles of different trigonometric function present above as the sum or difference of two angles, so we get,
\[\Rightarrow E=-\left[ \dfrac{\sin \left( 4\pi -\dfrac{\pi }{3} \right)\tan \left( 6\pi -\dfrac{\pi }{6} \right)\sec \left( 2\pi +\dfrac{\pi }{3} \right)}{\cos \left( \pi +\dfrac{\pi }{4} \right)\csc \left( 2\pi -\dfrac{\pi }{4} \right)\cos \left( 3\pi -\dfrac{\pi }{6} \right)} \right]\]
We know that in the first quadrant all the trigonometric functions are positive, in the second quadrant only sine and cosecant function is positive, in the third quadrant only tangent and cotangent function is positive and in the fourth quadrant only cosine and secant function is positive. Therefore the above expression can be simplified as: -
\[\begin{align}
& \Rightarrow E=-\left[ \dfrac{\left( -\sin \left( \dfrac{\pi }{3} \right) \right)\left( -\tan \left( \dfrac{\pi }{6} \right) \right)\sec \left( \dfrac{\pi }{3} \right)}{\left( -\cos \left( \dfrac{\pi }{4} \right) \right)\left( -\csc \left( \dfrac{\pi }{4} \right) \right)\left( -\cos \left( \dfrac{\pi }{6} \right) \right)} \right] \\
& \Rightarrow E=\left[ \dfrac{\sin \left( \dfrac{\pi }{3} \right)\tan \left( \dfrac{\pi }{6} \right)\sec \left( \dfrac{\pi }{3} \right)}{\cos \left( \dfrac{\pi }{4} \right)\csc \left( \dfrac{\pi }{4} \right)\cos \left( \dfrac{\pi }{6} \right)} \right] \\
\end{align}\]
Using and substituting the values $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$, $\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}$, $\sec \dfrac{\pi }{3}=2$, $\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$, $\csc \dfrac{\pi }{4}=\sqrt{2}$ and $\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}$ in the above expression we get,
\[\begin{align}
& \Rightarrow E=\left[ \dfrac{\dfrac{\sqrt{3}}{2}\times \dfrac{1}{\sqrt{3}}\times 2}{\dfrac{1}{\sqrt{2}}\times \sqrt{2}\times \dfrac{\sqrt{3}}{2}} \right] \\
& \therefore E=\dfrac{2}{\sqrt{3}} \\
\end{align}\]
So, the correct answer is “Option c”.
Note: Note that the only reason to convert the given angles from degrees into radians is that in higher classes we use the notation of radian and all the formulas are written in terms of $\pi $. You must remember the signs of all the trigonometric functions in different quadrants otherwise you may make sign mistakes while solving. Also, remember the values of all the functions for certain special angles like $\dfrac{\pi }{6}$, $\dfrac{\pi }{4}$, $\dfrac{\pi }{3}$, $\dfrac{\pi }{2}$ etc.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell