Answer
Verified
455.1k+ views
Hint:
To solve this question first divide the powers by 4 and then split all the powers of the terms in the form of multiplication with 4. E.g. ${i^{592}} = {i^{148 \times 4}}$ and if the power is not divisible by 4 then split the power in addition of remainder when divided by 4 and the quotient with multiplication of 4. E.g. ${i^{590}} = {i^{147 \times 4 + 2}} = {i^{147 \times 4}}.{i^2}$. Now, put the value of ${i^4} = 1$, ${i^2} = - 1$in the expression and solve the expression to get the answer.
Complete step by step solution:
First of all, let's see whose value we have to find?
We have to find the value of $\dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1$ ……..(1)
To find the value of this, we have to simplify each term in numerator and denominator.
To simplify each term, we will first split the power of the terms by dividing their power with 4 and write it as multiple 4 plus remainder e.g. ${i^{592}} = {i^{148 \times 4}}$, here when we divide 592 with 4, we get 148 and the remainder is 0. So, 592 can be replaced with $148 \times 4$. Similarly, if we divide 590 by 4, we get 147 and the remainder gets 2. Hence, 590 can be replaced by $147 \times 4 + 2$ and we write the value of ${i^{590}} = {i^{147 \times 4 + 2}} = {i^{147 \times 4}}.{i^2}$. Similarly, we can write ${i^{588}} = {i^{147 \times 4}}$ , ${i^{586}} = {i^{146 \times 4 + 2}} = {i^{146 \times 4}}.{i^2}$ , ${i^{584}} = {i^{146 \times 4}}$, ${i^{582}} = {i^{145 \times 4 + 2}} = {i^{145 \times 4}}.{i^2}$, ${i^{580}} = {i^{145 \times 4}}$, ${i^{578}} = {i^{144 \times 4 + 2}} = {i^{144 \times 4}}.{i^2}$, ${i^{576}} = {i^{144 \times 4}}$, ${i^{574}} = {i^{143 \times 4 + 2}} = {i^{143 \times 4}}.{i^2}$.
Putting all these value in (1), we get,
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{{{i^{148 \times 4}} + {i^{147 \times 4}}.{i^2} + {i^{147 \times 4}} + {i^{146 \times 4}}.{i^2} + {i^{146 \times 4}}}}{{{i^{145 \times 4}}.{i^2} + {i^{145 \times 4}} + {i^{144 \times 4}}.{i^2} + {i^{144 \times 4}} + {i^{143 \times 4}}.{i^2}}} - 1\]
………..(2)
Now, write each term in double power as given:
$ \Rightarrow {x^{a \times b}} = {\left( {{x^a}} \right)^b} = {\left( {{x^b}} \right)^a}$
Apply this concept on all terms in equation (2), we get,
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{{{{\left( {{i^4}} \right)}^{148}} + {{\left( {{i^4}} \right)}^{147}}.{i^2} + {{\left( {{i^4}} \right)}^{147}} + {{\left( {{i^4}} \right)}^{146}}.{i^2} + {{\left( {{i^4}} \right)}^{146}}}}{{{{\left( {{i^4}} \right)}^{145}}.{i^2} + {{\left( {{i^4}} \right)}^{145}} + {{\left( {{i^4}} \right)}^{144}}.{i^2} + {{\left( {{i^4}} \right)}^{144}} + {{\left( {{i^4}} \right)}^{143}}.{i^2}}} - 1\] ………….…(3)
We know that of ${i^4} = 1$ and ${i^2} = - 1$, hence put these values in (3), we get,
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{{{{\left( 1 \right)}^{148}} + {{\left( 1 \right)}^{147}}.\left( { - 1} \right) + {{\left( 1 \right)}^{147}} + {{\left( 1 \right)}^{146}}.\left( { - 1} \right) + {{\left( 1 \right)}^{146}}}}{{{{\left( 1 \right)}^{145}}.\left( { - 1} \right) + {{\left( 1 \right)}^{145}} + {{\left( 1 \right)}^{144}}.\left( { - 1} \right) + {{\left( 1 \right)}^{144}} + {{\left( 1 \right)}^{143}}.\left( { - 1} \right)}} - 1\]
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{{1 - 1 + 1 - 1 + 1}}{{ - 1 + 1 - 1 + 1 - 1}} - 1\]By opening the bracket, we get,
By cancelling 1 with -1 from both numerator and denominator, we get,
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{1}{{ - 1}} - 1\]
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = - 1 - 1\]
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = - 2\]
Hence, the value of $\dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1$ is 2.
Note:
While solving this question students generally forget to put negative signs in ${i^2} = - 1$instead they put ${i^2} = 1$, which is wrong. It is noted that if the power of $i$ is even then the value of that numeric will be integer i.e. -1 or 1 but if the power of $i$ is odd then the value of that numeric will be a complex number i.e. $i$ or $ - i$. E.g.
1) ${i^{64}} = {i^{4 \times 16}} = 1$
2) ${i^{65}} = {i^{4 \times 16 + 1}} = {i^{4 \times 16}}.i = i$
3) ${i^{66}} = {i^{4 \times 16 + 2}} = {i^{4 \times 16}}.{i^2} = - 1$
4) ${i^{67}} = {i^{4 \times 16 + 3}} = {i^{4 \times 16}}.{i^3} = - i$
To solve this question first divide the powers by 4 and then split all the powers of the terms in the form of multiplication with 4. E.g. ${i^{592}} = {i^{148 \times 4}}$ and if the power is not divisible by 4 then split the power in addition of remainder when divided by 4 and the quotient with multiplication of 4. E.g. ${i^{590}} = {i^{147 \times 4 + 2}} = {i^{147 \times 4}}.{i^2}$. Now, put the value of ${i^4} = 1$, ${i^2} = - 1$in the expression and solve the expression to get the answer.
Complete step by step solution:
First of all, let's see whose value we have to find?
We have to find the value of $\dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1$ ……..(1)
To find the value of this, we have to simplify each term in numerator and denominator.
To simplify each term, we will first split the power of the terms by dividing their power with 4 and write it as multiple 4 plus remainder e.g. ${i^{592}} = {i^{148 \times 4}}$, here when we divide 592 with 4, we get 148 and the remainder is 0. So, 592 can be replaced with $148 \times 4$. Similarly, if we divide 590 by 4, we get 147 and the remainder gets 2. Hence, 590 can be replaced by $147 \times 4 + 2$ and we write the value of ${i^{590}} = {i^{147 \times 4 + 2}} = {i^{147 \times 4}}.{i^2}$. Similarly, we can write ${i^{588}} = {i^{147 \times 4}}$ , ${i^{586}} = {i^{146 \times 4 + 2}} = {i^{146 \times 4}}.{i^2}$ , ${i^{584}} = {i^{146 \times 4}}$, ${i^{582}} = {i^{145 \times 4 + 2}} = {i^{145 \times 4}}.{i^2}$, ${i^{580}} = {i^{145 \times 4}}$, ${i^{578}} = {i^{144 \times 4 + 2}} = {i^{144 \times 4}}.{i^2}$, ${i^{576}} = {i^{144 \times 4}}$, ${i^{574}} = {i^{143 \times 4 + 2}} = {i^{143 \times 4}}.{i^2}$.
Putting all these value in (1), we get,
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{{{i^{148 \times 4}} + {i^{147 \times 4}}.{i^2} + {i^{147 \times 4}} + {i^{146 \times 4}}.{i^2} + {i^{146 \times 4}}}}{{{i^{145 \times 4}}.{i^2} + {i^{145 \times 4}} + {i^{144 \times 4}}.{i^2} + {i^{144 \times 4}} + {i^{143 \times 4}}.{i^2}}} - 1\]
………..(2)
Now, write each term in double power as given:
$ \Rightarrow {x^{a \times b}} = {\left( {{x^a}} \right)^b} = {\left( {{x^b}} \right)^a}$
Apply this concept on all terms in equation (2), we get,
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{{{{\left( {{i^4}} \right)}^{148}} + {{\left( {{i^4}} \right)}^{147}}.{i^2} + {{\left( {{i^4}} \right)}^{147}} + {{\left( {{i^4}} \right)}^{146}}.{i^2} + {{\left( {{i^4}} \right)}^{146}}}}{{{{\left( {{i^4}} \right)}^{145}}.{i^2} + {{\left( {{i^4}} \right)}^{145}} + {{\left( {{i^4}} \right)}^{144}}.{i^2} + {{\left( {{i^4}} \right)}^{144}} + {{\left( {{i^4}} \right)}^{143}}.{i^2}}} - 1\] ………….…(3)
We know that of ${i^4} = 1$ and ${i^2} = - 1$, hence put these values in (3), we get,
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{{{{\left( 1 \right)}^{148}} + {{\left( 1 \right)}^{147}}.\left( { - 1} \right) + {{\left( 1 \right)}^{147}} + {{\left( 1 \right)}^{146}}.\left( { - 1} \right) + {{\left( 1 \right)}^{146}}}}{{{{\left( 1 \right)}^{145}}.\left( { - 1} \right) + {{\left( 1 \right)}^{145}} + {{\left( 1 \right)}^{144}}.\left( { - 1} \right) + {{\left( 1 \right)}^{144}} + {{\left( 1 \right)}^{143}}.\left( { - 1} \right)}} - 1\]
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{{1 - 1 + 1 - 1 + 1}}{{ - 1 + 1 - 1 + 1 - 1}} - 1\]By opening the bracket, we get,
By cancelling 1 with -1 from both numerator and denominator, we get,
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = \dfrac{1}{{ - 1}} - 1\]
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = - 1 - 1\]
\[ \Rightarrow \dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1 = - 2\]
Hence, the value of $\dfrac{{{i^{592}} + {i^{590}} + {i^{588}} + {i^{586}} + {i^{584}}}}{{{i^{582}} + {i^{580}} + {i^{578}} + {i^{576}} + {i^{574}}}} - 1$ is 2.
Note:
While solving this question students generally forget to put negative signs in ${i^2} = - 1$instead they put ${i^2} = 1$, which is wrong. It is noted that if the power of $i$ is even then the value of that numeric will be integer i.e. -1 or 1 but if the power of $i$ is odd then the value of that numeric will be a complex number i.e. $i$ or $ - i$. E.g.
1) ${i^{64}} = {i^{4 \times 16}} = 1$
2) ${i^{65}} = {i^{4 \times 16 + 1}} = {i^{4 \times 16}}.i = i$
3) ${i^{66}} = {i^{4 \times 16 + 2}} = {i^{4 \times 16}}.{i^2} = - 1$
4) ${i^{67}} = {i^{4 \times 16 + 3}} = {i^{4 \times 16}}.{i^3} = - i$
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE