
Find the value of $\dfrac{dy}{dx}$ if $y=\sin \left( {{\cos }^{2}}x \right)$.
Answer
506.1k+ views
Hint:We first define the chain rule and how the differentiation of composite function works. We take differentiation of the main function with respect to the intermediate function and then take differentiation of the intermediate function with respect to $x$. we take multiplication of these two different differentiated values.
Complete step by step answer:
We differentiate the given function $y=\sin \left( {{\cos }^{2}}x \right)$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)=\sin x$ and the other function is $h\left( x \right)={{\cos }^{2}}x$.
We have $goh\left( x \right)=g\left( {{x}^{3}} \right)=\sin \left( {{\cos }^{2}}x \right)$. We take this as ours $y=\sin \left( {{\cos }^{2}}x \right)$.
We need to find the value of $\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \sin \left( {{\cos }^{2}}x \right) \right]$. We know $y=goh\left( x \right)$.
Differentiating $y=goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ y \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule. The chain rule allows us to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $y=\sin \left( {{\cos }^{2}}x \right)$, we take differentiation of $y=\sin \left( {{\cos }^{2}}x \right)$ with respect to the function $h\left( x \right)={{\cos }^{2}}x$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)={{\cos }^{2}}x$ with respect to $x$. We know that differentiation of $g\left( x \right)=\sin x$ is ${{g}^{'}}\left( x \right)=\cos x$ and differentiation of $h\left( x \right)={{\cos }^{2}}x$ is \[{{h}^{'}}\left( x \right)=2\cos x\times \left( -\sin x \right)=-\sin 2x\].
\[\Rightarrow \dfrac{d}{dx}\left[ y \right]=\dfrac{d}{d\left[ {{\cos }^{2}}x \right]}\left[ \sin \left( {{\cos }^{2}}x \right) \right]\times \dfrac{d\left[ {{\cos }^{2}}x \right]}{dx}\]
We place the values of the differentiations and get
\[\therefore \dfrac{dy}{dx}=\cos \left( {{\cos }^{2}}x \right)\left[ -\sin 2x \right]\]
Therefore, differentiation of $y=\sin \left( {{\cos }^{2}}x \right)$ is \[\dfrac{dy}{dx}=\cos \left( {{\cos }^{2}}x \right)\left[ -\sin 2x \right]\].
Note:We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Complete step by step answer:
We differentiate the given function $y=\sin \left( {{\cos }^{2}}x \right)$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)=\sin x$ and the other function is $h\left( x \right)={{\cos }^{2}}x$.
We have $goh\left( x \right)=g\left( {{x}^{3}} \right)=\sin \left( {{\cos }^{2}}x \right)$. We take this as ours $y=\sin \left( {{\cos }^{2}}x \right)$.
We need to find the value of $\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \sin \left( {{\cos }^{2}}x \right) \right]$. We know $y=goh\left( x \right)$.
Differentiating $y=goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ y \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule. The chain rule allows us to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $y=\sin \left( {{\cos }^{2}}x \right)$, we take differentiation of $y=\sin \left( {{\cos }^{2}}x \right)$ with respect to the function $h\left( x \right)={{\cos }^{2}}x$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)={{\cos }^{2}}x$ with respect to $x$. We know that differentiation of $g\left( x \right)=\sin x$ is ${{g}^{'}}\left( x \right)=\cos x$ and differentiation of $h\left( x \right)={{\cos }^{2}}x$ is \[{{h}^{'}}\left( x \right)=2\cos x\times \left( -\sin x \right)=-\sin 2x\].
\[\Rightarrow \dfrac{d}{dx}\left[ y \right]=\dfrac{d}{d\left[ {{\cos }^{2}}x \right]}\left[ \sin \left( {{\cos }^{2}}x \right) \right]\times \dfrac{d\left[ {{\cos }^{2}}x \right]}{dx}\]
We place the values of the differentiations and get
\[\therefore \dfrac{dy}{dx}=\cos \left( {{\cos }^{2}}x \right)\left[ -\sin 2x \right]\]
Therefore, differentiation of $y=\sin \left( {{\cos }^{2}}x \right)$ is \[\dfrac{dy}{dx}=\cos \left( {{\cos }^{2}}x \right)\left[ -\sin 2x \right]\].
Note:We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

