Answer
Verified
365.1k+ views
Hint:We first define the chain rule and how the differentiation of composite function works. We take differentiation of the main function with respect to the intermediate function and then take differentiation of the intermediate function with respect to $x$. we take multiplication of these two different differentiated values.
Complete step by step answer:
We differentiate the given function $y=\sin \left( {{\cos }^{2}}x \right)$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)=\sin x$ and the other function is $h\left( x \right)={{\cos }^{2}}x$.
We have $goh\left( x \right)=g\left( {{x}^{3}} \right)=\sin \left( {{\cos }^{2}}x \right)$. We take this as ours $y=\sin \left( {{\cos }^{2}}x \right)$.
We need to find the value of $\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \sin \left( {{\cos }^{2}}x \right) \right]$. We know $y=goh\left( x \right)$.
Differentiating $y=goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ y \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule. The chain rule allows us to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $y=\sin \left( {{\cos }^{2}}x \right)$, we take differentiation of $y=\sin \left( {{\cos }^{2}}x \right)$ with respect to the function $h\left( x \right)={{\cos }^{2}}x$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)={{\cos }^{2}}x$ with respect to $x$. We know that differentiation of $g\left( x \right)=\sin x$ is ${{g}^{'}}\left( x \right)=\cos x$ and differentiation of $h\left( x \right)={{\cos }^{2}}x$ is \[{{h}^{'}}\left( x \right)=2\cos x\times \left( -\sin x \right)=-\sin 2x\].
\[\Rightarrow \dfrac{d}{dx}\left[ y \right]=\dfrac{d}{d\left[ {{\cos }^{2}}x \right]}\left[ \sin \left( {{\cos }^{2}}x \right) \right]\times \dfrac{d\left[ {{\cos }^{2}}x \right]}{dx}\]
We place the values of the differentiations and get
\[\therefore \dfrac{dy}{dx}=\cos \left( {{\cos }^{2}}x \right)\left[ -\sin 2x \right]\]
Therefore, differentiation of $y=\sin \left( {{\cos }^{2}}x \right)$ is \[\dfrac{dy}{dx}=\cos \left( {{\cos }^{2}}x \right)\left[ -\sin 2x \right]\].
Note:We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Complete step by step answer:
We differentiate the given function $y=\sin \left( {{\cos }^{2}}x \right)$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)=\sin x$ and the other function is $h\left( x \right)={{\cos }^{2}}x$.
We have $goh\left( x \right)=g\left( {{x}^{3}} \right)=\sin \left( {{\cos }^{2}}x \right)$. We take this as ours $y=\sin \left( {{\cos }^{2}}x \right)$.
We need to find the value of $\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \sin \left( {{\cos }^{2}}x \right) \right]$. We know $y=goh\left( x \right)$.
Differentiating $y=goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ y \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule. The chain rule allows us to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $y=\sin \left( {{\cos }^{2}}x \right)$, we take differentiation of $y=\sin \left( {{\cos }^{2}}x \right)$ with respect to the function $h\left( x \right)={{\cos }^{2}}x$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)={{\cos }^{2}}x$ with respect to $x$. We know that differentiation of $g\left( x \right)=\sin x$ is ${{g}^{'}}\left( x \right)=\cos x$ and differentiation of $h\left( x \right)={{\cos }^{2}}x$ is \[{{h}^{'}}\left( x \right)=2\cos x\times \left( -\sin x \right)=-\sin 2x\].
\[\Rightarrow \dfrac{d}{dx}\left[ y \right]=\dfrac{d}{d\left[ {{\cos }^{2}}x \right]}\left[ \sin \left( {{\cos }^{2}}x \right) \right]\times \dfrac{d\left[ {{\cos }^{2}}x \right]}{dx}\]
We place the values of the differentiations and get
\[\therefore \dfrac{dy}{dx}=\cos \left( {{\cos }^{2}}x \right)\left[ -\sin 2x \right]\]
Therefore, differentiation of $y=\sin \left( {{\cos }^{2}}x \right)$ is \[\dfrac{dy}{dx}=\cos \left( {{\cos }^{2}}x \right)\left[ -\sin 2x \right]\].
Note:We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Bimbisara was the founder of dynasty A Nanda B Haryanka class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
10 examples of evaporation in daily life with explanations
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell