Find the value of $\dfrac{dy}{dx}$ if $y=\sin \left( {{\cos }^{2}}x \right)$.
Last updated date: 29th Mar 2023
•
Total views: 206.4k
•
Views today: 1.83k
Answer
206.4k+ views
Hint:We first define the chain rule and how the differentiation of composite function works. We take differentiation of the main function with respect to the intermediate function and then take differentiation of the intermediate function with respect to $x$. we take multiplication of these two different differentiated values.
Complete step by step answer:
We differentiate the given function $y=\sin \left( {{\cos }^{2}}x \right)$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)=\sin x$ and the other function is $h\left( x \right)={{\cos }^{2}}x$.
We have $goh\left( x \right)=g\left( {{x}^{3}} \right)=\sin \left( {{\cos }^{2}}x \right)$. We take this as ours $y=\sin \left( {{\cos }^{2}}x \right)$.
We need to find the value of $\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \sin \left( {{\cos }^{2}}x \right) \right]$. We know $y=goh\left( x \right)$.
Differentiating $y=goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ y \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule. The chain rule allows us to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $y=\sin \left( {{\cos }^{2}}x \right)$, we take differentiation of $y=\sin \left( {{\cos }^{2}}x \right)$ with respect to the function $h\left( x \right)={{\cos }^{2}}x$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)={{\cos }^{2}}x$ with respect to $x$. We know that differentiation of $g\left( x \right)=\sin x$ is ${{g}^{'}}\left( x \right)=\cos x$ and differentiation of $h\left( x \right)={{\cos }^{2}}x$ is \[{{h}^{'}}\left( x \right)=2\cos x\times \left( -\sin x \right)=-\sin 2x\].
\[\Rightarrow \dfrac{d}{dx}\left[ y \right]=\dfrac{d}{d\left[ {{\cos }^{2}}x \right]}\left[ \sin \left( {{\cos }^{2}}x \right) \right]\times \dfrac{d\left[ {{\cos }^{2}}x \right]}{dx}\]
We place the values of the differentiations and get
\[\therefore \dfrac{dy}{dx}=\cos \left( {{\cos }^{2}}x \right)\left[ -\sin 2x \right]\]
Therefore, differentiation of $y=\sin \left( {{\cos }^{2}}x \right)$ is \[\dfrac{dy}{dx}=\cos \left( {{\cos }^{2}}x \right)\left[ -\sin 2x \right]\].
Note:We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Complete step by step answer:
We differentiate the given function $y=\sin \left( {{\cos }^{2}}x \right)$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)=\sin x$ and the other function is $h\left( x \right)={{\cos }^{2}}x$.
We have $goh\left( x \right)=g\left( {{x}^{3}} \right)=\sin \left( {{\cos }^{2}}x \right)$. We take this as ours $y=\sin \left( {{\cos }^{2}}x \right)$.
We need to find the value of $\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \sin \left( {{\cos }^{2}}x \right) \right]$. We know $y=goh\left( x \right)$.
Differentiating $y=goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ y \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule. The chain rule allows us to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $y=\sin \left( {{\cos }^{2}}x \right)$, we take differentiation of $y=\sin \left( {{\cos }^{2}}x \right)$ with respect to the function $h\left( x \right)={{\cos }^{2}}x$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)={{\cos }^{2}}x$ with respect to $x$. We know that differentiation of $g\left( x \right)=\sin x$ is ${{g}^{'}}\left( x \right)=\cos x$ and differentiation of $h\left( x \right)={{\cos }^{2}}x$ is \[{{h}^{'}}\left( x \right)=2\cos x\times \left( -\sin x \right)=-\sin 2x\].
\[\Rightarrow \dfrac{d}{dx}\left[ y \right]=\dfrac{d}{d\left[ {{\cos }^{2}}x \right]}\left[ \sin \left( {{\cos }^{2}}x \right) \right]\times \dfrac{d\left[ {{\cos }^{2}}x \right]}{dx}\]
We place the values of the differentiations and get
\[\therefore \dfrac{dy}{dx}=\cos \left( {{\cos }^{2}}x \right)\left[ -\sin 2x \right]\]
Therefore, differentiation of $y=\sin \left( {{\cos }^{2}}x \right)$ is \[\dfrac{dy}{dx}=\cos \left( {{\cos }^{2}}x \right)\left[ -\sin 2x \right]\].
Note:We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Recently Updated Pages
Most eubacterial antibiotics are obtained from A Rhizobium class 12 biology NEET_UG

Salamin bioinsecticides have been extracted from A class 12 biology NEET_UG

Which of the following statements regarding Baculoviruses class 12 biology NEET_UG

Sewage or municipal sewer pipes should not be directly class 12 biology NEET_UG

Sewage purification is performed by A Microbes B Fertilisers class 12 biology NEET_UG

Enzyme immobilisation is Aconversion of an active enzyme class 12 biology NEET_UG

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
