Find the value of $\dfrac{{dy}}{{dx}}$ if ${x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$.
(A) $ - \dfrac{x}{y}$
(B) $\dfrac{x}{y}$
(C) $ - \dfrac{y}{x}$
(D) $\dfrac{y}{x}$
Last updated date: 16th Mar 2023
•
Total views: 303.6k
•
Views today: 7.83k
Answer
303.6k+ views
Hint: Take logarithm on both sides of the equation. Use formulae $\log mn = \log m + \log n$ and $\log {m^n} = n\log m$ and then differentiate both sides with respect to $x$.
Complete step-by-step answer:
According to question, the given equation is:
$ \Rightarrow {x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$.
Taking logarithm on both sides of this equation, we’ll get:
\[ \Rightarrow \log \left( {{x^p}{y^q}} \right) = \log {\left( {x + y} \right)^{p + q}},\]
We know that $\log mn = \log m + \log n$ and $\log {m^n} = n\log m$, applying these formulae, we’ll get:
$
\Rightarrow \log {x^p} + \log {y^q} = \left( {p + q} \right)\log \left( {x + y} \right), \\
\Rightarrow p\log x + q\log y = \left( {p + q} \right)\log \left( {x + y} \right) \\
$
Now, differentiating both sides with respect to $x$, we’ll get:
\[
\Rightarrow \dfrac{d}{{dx}}\left( {p\log x + q\log y} \right) = \dfrac{d}{{dx}}\left[ {\left( {p + q} \right)\log \left( {x + y} \right)} \right], \\
\Rightarrow p\dfrac{d}{{dx}}\log x + q\dfrac{d}{{dx}}\log y = \left( {p + q} \right)\dfrac{d}{{dx}}\log \left( {x + y} \right) .....(i) \\
\]
We know that \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]. And for \[\dfrac{d}{{dx}}\left( {x + y} \right)\], we will use chain rule of differentiation which is:
\[ \Rightarrow \dfrac{d}{{dx}}f\left( {g\left( x \right)} \right) = f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}g\left( x \right)\].
Using these formulae in equation \[(i)\], we’ll get:
\[
\Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \left( {p + q} \right)\left[ {\dfrac{1}{{\left( {x + y} \right)}} \times \dfrac{d}{{dx}}\left( {x + y} \right)} \right], \\
\Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} \times \left( {1 + \dfrac{{dy}}{{dx}}} \right), \\
\]
\[ \Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} + \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}}\dfrac{{dy}}{{dx}},\]
Now separating the terms having $\dfrac{{dy}}{{dx}}$ on one side, we’ll get:
\[
\Rightarrow \dfrac{p}{x} - \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} = \left[ {\dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} - \dfrac{q}{y}} \right]\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{{px + py - px - qx}}{{x\left( {x + y} \right)}} = \dfrac{{\left( {py + qy - qx - qy} \right)}}{{y\left( {x + y} \right)}}\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{{py - qx}}{x} = \dfrac{{\left( {py - qx} \right)}}{y}\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{x}, \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\]
Thus, the value of \[\dfrac{{dy}}{{dx}}\] is \[\dfrac{y}{x}\]. (D) is the correct option.
Note: We can also directly differentiate the equation ${x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$ without using logarithm:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}} .....(ii)\]
For \[\dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right)\], we will use product rule of differentiation which is given as:
$\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)$
And for \[\dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}}\], we will use formula $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ and then chain rule discussed above.
Using all these results in equation \[(ii)\], we’ll get:
$ \Rightarrow {x^p}\dfrac{d}{{dx}}{y^q} + {y^q}\dfrac{d}{{dx}}{x^p} = \left( {p + q} \right){\left( {x + y} \right)^{p + q - 1}}\dfrac{d}{{dx}}\left( {x + y} \right)$
When we differentiate the terms and separate them, we’ll get the same result as we have found above.
Complete step-by-step answer:
According to question, the given equation is:
$ \Rightarrow {x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$.
Taking logarithm on both sides of this equation, we’ll get:
\[ \Rightarrow \log \left( {{x^p}{y^q}} \right) = \log {\left( {x + y} \right)^{p + q}},\]
We know that $\log mn = \log m + \log n$ and $\log {m^n} = n\log m$, applying these formulae, we’ll get:
$
\Rightarrow \log {x^p} + \log {y^q} = \left( {p + q} \right)\log \left( {x + y} \right), \\
\Rightarrow p\log x + q\log y = \left( {p + q} \right)\log \left( {x + y} \right) \\
$
Now, differentiating both sides with respect to $x$, we’ll get:
\[
\Rightarrow \dfrac{d}{{dx}}\left( {p\log x + q\log y} \right) = \dfrac{d}{{dx}}\left[ {\left( {p + q} \right)\log \left( {x + y} \right)} \right], \\
\Rightarrow p\dfrac{d}{{dx}}\log x + q\dfrac{d}{{dx}}\log y = \left( {p + q} \right)\dfrac{d}{{dx}}\log \left( {x + y} \right) .....(i) \\
\]
We know that \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]. And for \[\dfrac{d}{{dx}}\left( {x + y} \right)\], we will use chain rule of differentiation which is:
\[ \Rightarrow \dfrac{d}{{dx}}f\left( {g\left( x \right)} \right) = f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}g\left( x \right)\].
Using these formulae in equation \[(i)\], we’ll get:
\[
\Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \left( {p + q} \right)\left[ {\dfrac{1}{{\left( {x + y} \right)}} \times \dfrac{d}{{dx}}\left( {x + y} \right)} \right], \\
\Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} \times \left( {1 + \dfrac{{dy}}{{dx}}} \right), \\
\]
\[ \Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} + \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}}\dfrac{{dy}}{{dx}},\]
Now separating the terms having $\dfrac{{dy}}{{dx}}$ on one side, we’ll get:
\[
\Rightarrow \dfrac{p}{x} - \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} = \left[ {\dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} - \dfrac{q}{y}} \right]\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{{px + py - px - qx}}{{x\left( {x + y} \right)}} = \dfrac{{\left( {py + qy - qx - qy} \right)}}{{y\left( {x + y} \right)}}\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{{py - qx}}{x} = \dfrac{{\left( {py - qx} \right)}}{y}\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{x}, \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\]
Thus, the value of \[\dfrac{{dy}}{{dx}}\] is \[\dfrac{y}{x}\]. (D) is the correct option.
Note: We can also directly differentiate the equation ${x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$ without using logarithm:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}} .....(ii)\]
For \[\dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right)\], we will use product rule of differentiation which is given as:
$\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)$
And for \[\dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}}\], we will use formula $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ and then chain rule discussed above.
Using all these results in equation \[(ii)\], we’ll get:
$ \Rightarrow {x^p}\dfrac{d}{{dx}}{y^q} + {y^q}\dfrac{d}{{dx}}{x^p} = \left( {p + q} \right){\left( {x + y} \right)^{p + q - 1}}\dfrac{d}{{dx}}\left( {x + y} \right)$
When we differentiate the terms and separate them, we’ll get the same result as we have found above.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
