
Find the value of $\dfrac{{dy}}{{dx}}$ if ${x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$.
(A) $ - \dfrac{x}{y}$
(B) $\dfrac{x}{y}$
(C) $ - \dfrac{y}{x}$
(D) $\dfrac{y}{x}$
Answer
604.8k+ views
Hint: Take logarithm on both sides of the equation. Use formulae $\log mn = \log m + \log n$ and $\log {m^n} = n\log m$ and then differentiate both sides with respect to $x$.
Complete step-by-step answer:
According to question, the given equation is:
$ \Rightarrow {x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$.
Taking logarithm on both sides of this equation, we’ll get:
\[ \Rightarrow \log \left( {{x^p}{y^q}} \right) = \log {\left( {x + y} \right)^{p + q}},\]
We know that $\log mn = \log m + \log n$ and $\log {m^n} = n\log m$, applying these formulae, we’ll get:
$
\Rightarrow \log {x^p} + \log {y^q} = \left( {p + q} \right)\log \left( {x + y} \right), \\
\Rightarrow p\log x + q\log y = \left( {p + q} \right)\log \left( {x + y} \right) \\
$
Now, differentiating both sides with respect to $x$, we’ll get:
\[
\Rightarrow \dfrac{d}{{dx}}\left( {p\log x + q\log y} \right) = \dfrac{d}{{dx}}\left[ {\left( {p + q} \right)\log \left( {x + y} \right)} \right], \\
\Rightarrow p\dfrac{d}{{dx}}\log x + q\dfrac{d}{{dx}}\log y = \left( {p + q} \right)\dfrac{d}{{dx}}\log \left( {x + y} \right) .....(i) \\
\]
We know that \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]. And for \[\dfrac{d}{{dx}}\left( {x + y} \right)\], we will use chain rule of differentiation which is:
\[ \Rightarrow \dfrac{d}{{dx}}f\left( {g\left( x \right)} \right) = f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}g\left( x \right)\].
Using these formulae in equation \[(i)\], we’ll get:
\[
\Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \left( {p + q} \right)\left[ {\dfrac{1}{{\left( {x + y} \right)}} \times \dfrac{d}{{dx}}\left( {x + y} \right)} \right], \\
\Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} \times \left( {1 + \dfrac{{dy}}{{dx}}} \right), \\
\]
\[ \Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} + \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}}\dfrac{{dy}}{{dx}},\]
Now separating the terms having $\dfrac{{dy}}{{dx}}$ on one side, we’ll get:
\[
\Rightarrow \dfrac{p}{x} - \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} = \left[ {\dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} - \dfrac{q}{y}} \right]\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{{px + py - px - qx}}{{x\left( {x + y} \right)}} = \dfrac{{\left( {py + qy - qx - qy} \right)}}{{y\left( {x + y} \right)}}\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{{py - qx}}{x} = \dfrac{{\left( {py - qx} \right)}}{y}\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{x}, \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\]
Thus, the value of \[\dfrac{{dy}}{{dx}}\] is \[\dfrac{y}{x}\]. (D) is the correct option.
Note: We can also directly differentiate the equation ${x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$ without using logarithm:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}} .....(ii)\]
For \[\dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right)\], we will use product rule of differentiation which is given as:
$\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)$
And for \[\dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}}\], we will use formula $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ and then chain rule discussed above.
Using all these results in equation \[(ii)\], we’ll get:
$ \Rightarrow {x^p}\dfrac{d}{{dx}}{y^q} + {y^q}\dfrac{d}{{dx}}{x^p} = \left( {p + q} \right){\left( {x + y} \right)^{p + q - 1}}\dfrac{d}{{dx}}\left( {x + y} \right)$
When we differentiate the terms and separate them, we’ll get the same result as we have found above.
Complete step-by-step answer:
According to question, the given equation is:
$ \Rightarrow {x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$.
Taking logarithm on both sides of this equation, we’ll get:
\[ \Rightarrow \log \left( {{x^p}{y^q}} \right) = \log {\left( {x + y} \right)^{p + q}},\]
We know that $\log mn = \log m + \log n$ and $\log {m^n} = n\log m$, applying these formulae, we’ll get:
$
\Rightarrow \log {x^p} + \log {y^q} = \left( {p + q} \right)\log \left( {x + y} \right), \\
\Rightarrow p\log x + q\log y = \left( {p + q} \right)\log \left( {x + y} \right) \\
$
Now, differentiating both sides with respect to $x$, we’ll get:
\[
\Rightarrow \dfrac{d}{{dx}}\left( {p\log x + q\log y} \right) = \dfrac{d}{{dx}}\left[ {\left( {p + q} \right)\log \left( {x + y} \right)} \right], \\
\Rightarrow p\dfrac{d}{{dx}}\log x + q\dfrac{d}{{dx}}\log y = \left( {p + q} \right)\dfrac{d}{{dx}}\log \left( {x + y} \right) .....(i) \\
\]
We know that \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]. And for \[\dfrac{d}{{dx}}\left( {x + y} \right)\], we will use chain rule of differentiation which is:
\[ \Rightarrow \dfrac{d}{{dx}}f\left( {g\left( x \right)} \right) = f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}g\left( x \right)\].
Using these formulae in equation \[(i)\], we’ll get:
\[
\Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \left( {p + q} \right)\left[ {\dfrac{1}{{\left( {x + y} \right)}} \times \dfrac{d}{{dx}}\left( {x + y} \right)} \right], \\
\Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} \times \left( {1 + \dfrac{{dy}}{{dx}}} \right), \\
\]
\[ \Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} + \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}}\dfrac{{dy}}{{dx}},\]
Now separating the terms having $\dfrac{{dy}}{{dx}}$ on one side, we’ll get:
\[
\Rightarrow \dfrac{p}{x} - \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} = \left[ {\dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} - \dfrac{q}{y}} \right]\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{{px + py - px - qx}}{{x\left( {x + y} \right)}} = \dfrac{{\left( {py + qy - qx - qy} \right)}}{{y\left( {x + y} \right)}}\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{{py - qx}}{x} = \dfrac{{\left( {py - qx} \right)}}{y}\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{x}, \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\]
Thus, the value of \[\dfrac{{dy}}{{dx}}\] is \[\dfrac{y}{x}\]. (D) is the correct option.
Note: We can also directly differentiate the equation ${x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$ without using logarithm:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}} .....(ii)\]
For \[\dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right)\], we will use product rule of differentiation which is given as:
$\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)$
And for \[\dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}}\], we will use formula $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ and then chain rule discussed above.
Using all these results in equation \[(ii)\], we’ll get:
$ \Rightarrow {x^p}\dfrac{d}{{dx}}{y^q} + {y^q}\dfrac{d}{{dx}}{x^p} = \left( {p + q} \right){\left( {x + y} \right)^{p + q - 1}}\dfrac{d}{{dx}}\left( {x + y} \right)$
When we differentiate the terms and separate them, we’ll get the same result as we have found above.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

