
Find the value of $\dfrac{{dy}}{{dx}}$ if ${x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$.
(A) $ - \dfrac{x}{y}$
(B) $\dfrac{x}{y}$
(C) $ - \dfrac{y}{x}$
(D) $\dfrac{y}{x}$
Answer
510.3k+ views
Hint: Take logarithm on both sides of the equation. Use formulae $\log mn = \log m + \log n$ and $\log {m^n} = n\log m$ and then differentiate both sides with respect to $x$.
Complete step-by-step answer:
According to question, the given equation is:
$ \Rightarrow {x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$.
Taking logarithm on both sides of this equation, we’ll get:
\[ \Rightarrow \log \left( {{x^p}{y^q}} \right) = \log {\left( {x + y} \right)^{p + q}},\]
We know that $\log mn = \log m + \log n$ and $\log {m^n} = n\log m$, applying these formulae, we’ll get:
$
\Rightarrow \log {x^p} + \log {y^q} = \left( {p + q} \right)\log \left( {x + y} \right), \\
\Rightarrow p\log x + q\log y = \left( {p + q} \right)\log \left( {x + y} \right) \\
$
Now, differentiating both sides with respect to $x$, we’ll get:
\[
\Rightarrow \dfrac{d}{{dx}}\left( {p\log x + q\log y} \right) = \dfrac{d}{{dx}}\left[ {\left( {p + q} \right)\log \left( {x + y} \right)} \right], \\
\Rightarrow p\dfrac{d}{{dx}}\log x + q\dfrac{d}{{dx}}\log y = \left( {p + q} \right)\dfrac{d}{{dx}}\log \left( {x + y} \right) .....(i) \\
\]
We know that \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]. And for \[\dfrac{d}{{dx}}\left( {x + y} \right)\], we will use chain rule of differentiation which is:
\[ \Rightarrow \dfrac{d}{{dx}}f\left( {g\left( x \right)} \right) = f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}g\left( x \right)\].
Using these formulae in equation \[(i)\], we’ll get:
\[
\Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \left( {p + q} \right)\left[ {\dfrac{1}{{\left( {x + y} \right)}} \times \dfrac{d}{{dx}}\left( {x + y} \right)} \right], \\
\Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} \times \left( {1 + \dfrac{{dy}}{{dx}}} \right), \\
\]
\[ \Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} + \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}}\dfrac{{dy}}{{dx}},\]
Now separating the terms having $\dfrac{{dy}}{{dx}}$ on one side, we’ll get:
\[
\Rightarrow \dfrac{p}{x} - \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} = \left[ {\dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} - \dfrac{q}{y}} \right]\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{{px + py - px - qx}}{{x\left( {x + y} \right)}} = \dfrac{{\left( {py + qy - qx - qy} \right)}}{{y\left( {x + y} \right)}}\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{{py - qx}}{x} = \dfrac{{\left( {py - qx} \right)}}{y}\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{x}, \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\]
Thus, the value of \[\dfrac{{dy}}{{dx}}\] is \[\dfrac{y}{x}\]. (D) is the correct option.
Note: We can also directly differentiate the equation ${x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$ without using logarithm:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}} .....(ii)\]
For \[\dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right)\], we will use product rule of differentiation which is given as:
$\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)$
And for \[\dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}}\], we will use formula $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ and then chain rule discussed above.
Using all these results in equation \[(ii)\], we’ll get:
$ \Rightarrow {x^p}\dfrac{d}{{dx}}{y^q} + {y^q}\dfrac{d}{{dx}}{x^p} = \left( {p + q} \right){\left( {x + y} \right)^{p + q - 1}}\dfrac{d}{{dx}}\left( {x + y} \right)$
When we differentiate the terms and separate them, we’ll get the same result as we have found above.
Complete step-by-step answer:
According to question, the given equation is:
$ \Rightarrow {x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$.
Taking logarithm on both sides of this equation, we’ll get:
\[ \Rightarrow \log \left( {{x^p}{y^q}} \right) = \log {\left( {x + y} \right)^{p + q}},\]
We know that $\log mn = \log m + \log n$ and $\log {m^n} = n\log m$, applying these formulae, we’ll get:
$
\Rightarrow \log {x^p} + \log {y^q} = \left( {p + q} \right)\log \left( {x + y} \right), \\
\Rightarrow p\log x + q\log y = \left( {p + q} \right)\log \left( {x + y} \right) \\
$
Now, differentiating both sides with respect to $x$, we’ll get:
\[
\Rightarrow \dfrac{d}{{dx}}\left( {p\log x + q\log y} \right) = \dfrac{d}{{dx}}\left[ {\left( {p + q} \right)\log \left( {x + y} \right)} \right], \\
\Rightarrow p\dfrac{d}{{dx}}\log x + q\dfrac{d}{{dx}}\log y = \left( {p + q} \right)\dfrac{d}{{dx}}\log \left( {x + y} \right) .....(i) \\
\]
We know that \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]. And for \[\dfrac{d}{{dx}}\left( {x + y} \right)\], we will use chain rule of differentiation which is:
\[ \Rightarrow \dfrac{d}{{dx}}f\left( {g\left( x \right)} \right) = f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}g\left( x \right)\].
Using these formulae in equation \[(i)\], we’ll get:
\[
\Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \left( {p + q} \right)\left[ {\dfrac{1}{{\left( {x + y} \right)}} \times \dfrac{d}{{dx}}\left( {x + y} \right)} \right], \\
\Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} \times \left( {1 + \dfrac{{dy}}{{dx}}} \right), \\
\]
\[ \Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} + \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}}\dfrac{{dy}}{{dx}},\]
Now separating the terms having $\dfrac{{dy}}{{dx}}$ on one side, we’ll get:
\[
\Rightarrow \dfrac{p}{x} - \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} = \left[ {\dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} - \dfrac{q}{y}} \right]\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{{px + py - px - qx}}{{x\left( {x + y} \right)}} = \dfrac{{\left( {py + qy - qx - qy} \right)}}{{y\left( {x + y} \right)}}\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{{py - qx}}{x} = \dfrac{{\left( {py - qx} \right)}}{y}\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{x}, \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\]
Thus, the value of \[\dfrac{{dy}}{{dx}}\] is \[\dfrac{y}{x}\]. (D) is the correct option.
Note: We can also directly differentiate the equation ${x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$ without using logarithm:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}} .....(ii)\]
For \[\dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right)\], we will use product rule of differentiation which is given as:
$\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)$
And for \[\dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}}\], we will use formula $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ and then chain rule discussed above.
Using all these results in equation \[(ii)\], we’ll get:
$ \Rightarrow {x^p}\dfrac{d}{{dx}}{y^q} + {y^q}\dfrac{d}{{dx}}{x^p} = \left( {p + q} \right){\left( {x + y} \right)^{p + q - 1}}\dfrac{d}{{dx}}\left( {x + y} \right)$
When we differentiate the terms and separate them, we’ll get the same result as we have found above.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE
