Answer
Verified
473.1k+ views
Hint: Take logarithm on both sides of the equation. Use formulae $\log mn = \log m + \log n$ and $\log {m^n} = n\log m$ and then differentiate both sides with respect to $x$.
Complete step-by-step answer:
According to question, the given equation is:
$ \Rightarrow {x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$.
Taking logarithm on both sides of this equation, we’ll get:
\[ \Rightarrow \log \left( {{x^p}{y^q}} \right) = \log {\left( {x + y} \right)^{p + q}},\]
We know that $\log mn = \log m + \log n$ and $\log {m^n} = n\log m$, applying these formulae, we’ll get:
$
\Rightarrow \log {x^p} + \log {y^q} = \left( {p + q} \right)\log \left( {x + y} \right), \\
\Rightarrow p\log x + q\log y = \left( {p + q} \right)\log \left( {x + y} \right) \\
$
Now, differentiating both sides with respect to $x$, we’ll get:
\[
\Rightarrow \dfrac{d}{{dx}}\left( {p\log x + q\log y} \right) = \dfrac{d}{{dx}}\left[ {\left( {p + q} \right)\log \left( {x + y} \right)} \right], \\
\Rightarrow p\dfrac{d}{{dx}}\log x + q\dfrac{d}{{dx}}\log y = \left( {p + q} \right)\dfrac{d}{{dx}}\log \left( {x + y} \right) .....(i) \\
\]
We know that \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]. And for \[\dfrac{d}{{dx}}\left( {x + y} \right)\], we will use chain rule of differentiation which is:
\[ \Rightarrow \dfrac{d}{{dx}}f\left( {g\left( x \right)} \right) = f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}g\left( x \right)\].
Using these formulae in equation \[(i)\], we’ll get:
\[
\Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \left( {p + q} \right)\left[ {\dfrac{1}{{\left( {x + y} \right)}} \times \dfrac{d}{{dx}}\left( {x + y} \right)} \right], \\
\Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} \times \left( {1 + \dfrac{{dy}}{{dx}}} \right), \\
\]
\[ \Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} + \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}}\dfrac{{dy}}{{dx}},\]
Now separating the terms having $\dfrac{{dy}}{{dx}}$ on one side, we’ll get:
\[
\Rightarrow \dfrac{p}{x} - \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} = \left[ {\dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} - \dfrac{q}{y}} \right]\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{{px + py - px - qx}}{{x\left( {x + y} \right)}} = \dfrac{{\left( {py + qy - qx - qy} \right)}}{{y\left( {x + y} \right)}}\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{{py - qx}}{x} = \dfrac{{\left( {py - qx} \right)}}{y}\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{x}, \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\]
Thus, the value of \[\dfrac{{dy}}{{dx}}\] is \[\dfrac{y}{x}\]. (D) is the correct option.
Note: We can also directly differentiate the equation ${x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$ without using logarithm:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}} .....(ii)\]
For \[\dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right)\], we will use product rule of differentiation which is given as:
$\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)$
And for \[\dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}}\], we will use formula $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ and then chain rule discussed above.
Using all these results in equation \[(ii)\], we’ll get:
$ \Rightarrow {x^p}\dfrac{d}{{dx}}{y^q} + {y^q}\dfrac{d}{{dx}}{x^p} = \left( {p + q} \right){\left( {x + y} \right)^{p + q - 1}}\dfrac{d}{{dx}}\left( {x + y} \right)$
When we differentiate the terms and separate them, we’ll get the same result as we have found above.
Complete step-by-step answer:
According to question, the given equation is:
$ \Rightarrow {x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$.
Taking logarithm on both sides of this equation, we’ll get:
\[ \Rightarrow \log \left( {{x^p}{y^q}} \right) = \log {\left( {x + y} \right)^{p + q}},\]
We know that $\log mn = \log m + \log n$ and $\log {m^n} = n\log m$, applying these formulae, we’ll get:
$
\Rightarrow \log {x^p} + \log {y^q} = \left( {p + q} \right)\log \left( {x + y} \right), \\
\Rightarrow p\log x + q\log y = \left( {p + q} \right)\log \left( {x + y} \right) \\
$
Now, differentiating both sides with respect to $x$, we’ll get:
\[
\Rightarrow \dfrac{d}{{dx}}\left( {p\log x + q\log y} \right) = \dfrac{d}{{dx}}\left[ {\left( {p + q} \right)\log \left( {x + y} \right)} \right], \\
\Rightarrow p\dfrac{d}{{dx}}\log x + q\dfrac{d}{{dx}}\log y = \left( {p + q} \right)\dfrac{d}{{dx}}\log \left( {x + y} \right) .....(i) \\
\]
We know that \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]. And for \[\dfrac{d}{{dx}}\left( {x + y} \right)\], we will use chain rule of differentiation which is:
\[ \Rightarrow \dfrac{d}{{dx}}f\left( {g\left( x \right)} \right) = f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}g\left( x \right)\].
Using these formulae in equation \[(i)\], we’ll get:
\[
\Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \left( {p + q} \right)\left[ {\dfrac{1}{{\left( {x + y} \right)}} \times \dfrac{d}{{dx}}\left( {x + y} \right)} \right], \\
\Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} \times \left( {1 + \dfrac{{dy}}{{dx}}} \right), \\
\]
\[ \Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} + \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}}\dfrac{{dy}}{{dx}},\]
Now separating the terms having $\dfrac{{dy}}{{dx}}$ on one side, we’ll get:
\[
\Rightarrow \dfrac{p}{x} - \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} = \left[ {\dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} - \dfrac{q}{y}} \right]\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{{px + py - px - qx}}{{x\left( {x + y} \right)}} = \dfrac{{\left( {py + qy - qx - qy} \right)}}{{y\left( {x + y} \right)}}\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{{py - qx}}{x} = \dfrac{{\left( {py - qx} \right)}}{y}\dfrac{{dy}}{{dx}}, \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{x}, \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\]
Thus, the value of \[\dfrac{{dy}}{{dx}}\] is \[\dfrac{y}{x}\]. (D) is the correct option.
Note: We can also directly differentiate the equation ${x^p}{y^q} = {\left( {x + y} \right)^{p + q}}$ without using logarithm:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}} .....(ii)\]
For \[\dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right)\], we will use product rule of differentiation which is given as:
$\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)$
And for \[\dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}}\], we will use formula $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ and then chain rule discussed above.
Using all these results in equation \[(ii)\], we’ll get:
$ \Rightarrow {x^p}\dfrac{d}{{dx}}{y^q} + {y^q}\dfrac{d}{{dx}}{x^p} = \left( {p + q} \right){\left( {x + y} \right)^{p + q - 1}}\dfrac{d}{{dx}}\left( {x + y} \right)$
When we differentiate the terms and separate them, we’ll get the same result as we have found above.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE