Answer
Verified
425.4k+ views
Hint:We know that$\csc x = \dfrac{1}{{\sin x}}$. So first we need to find $\sin \left( {\dfrac{{11\pi }}{6}}
\right)$and then find its reciprocal.
We also know$\;\cos 2\theta = 1 - 2{\sin ^2}\theta $, this is one of the basic trigonometric identities.
In order to solve this question we can use the above mentioned identity. For that we have to convert our question in such a way that it can be expressed in the form of the above given identity.
Complete step by step solution:
Given
$\csc \left( {\dfrac{{11\pi }}{6}} \right)...................................\left( i \right)$
Now we also know$\csc x = \dfrac{1}{{\sin x}}$. So to find the value of $\csc \left( {\dfrac{{11\pi }}{6}}
\right)$we need to find $\sin \left( {\dfrac{{11\pi }}{6}} \right)$and then find it’s reciprocal.
Now to find $\sin \left( {\dfrac{{11\pi }}{6}} \right)$we can use the identity$\;\cos 2\theta = 1 - 2{\sin
^2}\theta $.
Finding the value of$\sin \left( {\dfrac{{11\pi }}{6}} \right)$:
Now let’s assume $\sin \left( {\dfrac{{11\pi }}{6}} \right) = \sin a......................\left( {ii} \right)$
So similarly we can write $\;\cos a = \cos \left( {\dfrac{{11\pi }}{6}} \right)$
$ \Rightarrow \cos 2a = \cos \left( {\dfrac{{22\pi }}{6}} \right)$
We have to find the value of $\cos \left( {\dfrac{{22\pi }}{6}} \right)$such that by using the identity we can then solve the question.
So finding the value of$\cos \left( {\dfrac{{22\pi }}{6}} \right)$:
We know that $\cos \left( {\dfrac{{22\pi }}{6}} \right)$can be written as
$
\cos \left( {\dfrac{{12\left( {2\pi } \right)}}{6} - \dfrac{{2\pi }}{6}} \right) = \cos \left( {2\left( {2\pi }
\right) - \dfrac{{2\pi }}{6}} \right).................(iii) \\
\\
$
So from (iii) we know that \[\cos \left( {2\left( {2\pi } \right) - \dfrac{{2\pi }}{6}} \right)\]would be in
the IV Quadrant where cosine is positive.
Such that:
\[\cos \left( {2\left( {2\pi } \right) - \dfrac{{2\pi }}{6}} \right) = \cos \left( {\dfrac{{2\pi }}{6}}
\right)..................(iv)\]
Also we know \[\cos \left( {\dfrac{{2\pi }}{6}} \right) = \cos \left( {\dfrac{\pi }{3}} \right) =
\dfrac{1}{2}....................(v)\]
Now by using the identity $\;\cos 2\theta = 1 - 2{\sin ^2}\theta $we get
$
\Rightarrow \cos 2a = 1 - 2{\sin ^2}a = \dfrac{1}{2} \\
\Rightarrow 2{\sin ^2}a = 1 - \dfrac{1}{2} = \dfrac{1}{2} \\
\Rightarrow {\sin ^2}a = \dfrac{1}{4} \\
$
Now from (ii) \[\sin \left( {\dfrac{{11\pi }}{6}} \right) = \sin a\]
$
\Rightarrow \sin {\left( {\dfrac{{11\pi }}{6}} \right)^2} = \dfrac{1}{4} \\
\Rightarrow \sin \left( {\dfrac{{11\pi }}{6}} \right) = - \dfrac{1}{2} \\
$
Now we know that$\csc x = \dfrac{1}{{\sin x}}$, such that:
$\csc \left( {\dfrac{{11\pi }}{6}} \right) = \dfrac{1}{{\sin \left( {\dfrac{{11\pi }}{6}} \right)}} =
\dfrac{1}{{\left( { - \dfrac{1}{2}} \right)}} = - 2$
Therefore the value of$\csc \left( {\dfrac{{11\pi }}{6}} \right)\;{\text{is}}\; - 2$.
Note:
General things to be known for solving this question.
I Quadrant:$0\; - \;\dfrac{\pi }{2}$ All values are positive.
II Quadrant:$\dfrac{\pi }{2}\; - \;\pi $ Only Sine and Cosec values are positive.
III Quadrant:$\pi \; - \;\dfrac{{3\pi }}{2}$ Only Tan and Cot values are positive.
IV Quadrant:$\dfrac{{3\pi }}{2}\; - \;2\pi $ Only Cos and Sec values are positive.
Some other equations needed for solving these types of problem are:
\[
\sin \left( {2\theta } \right) = 2\sin \left( \theta \right)\cos \left( \theta \right) \\
\cos \left( {2\theta } \right) = {\cos ^2}\left( \theta \right)-{\sin ^2}\left( \theta \right) = 1-2{\text{
}}{\sin ^2}\left( \theta \right) = 2{\text{ }}{\cos ^2}\left( \theta \right)-1 \\
\]
Also while approaching a trigonometric problem one should keep in mind that one should work with one side at a time and manipulate it to the other side. The most straightforward way to do this is to simplify one side to the other directly.
\right)$and then find its reciprocal.
We also know$\;\cos 2\theta = 1 - 2{\sin ^2}\theta $, this is one of the basic trigonometric identities.
In order to solve this question we can use the above mentioned identity. For that we have to convert our question in such a way that it can be expressed in the form of the above given identity.
Complete step by step solution:
Given
$\csc \left( {\dfrac{{11\pi }}{6}} \right)...................................\left( i \right)$
Now we also know$\csc x = \dfrac{1}{{\sin x}}$. So to find the value of $\csc \left( {\dfrac{{11\pi }}{6}}
\right)$we need to find $\sin \left( {\dfrac{{11\pi }}{6}} \right)$and then find it’s reciprocal.
Now to find $\sin \left( {\dfrac{{11\pi }}{6}} \right)$we can use the identity$\;\cos 2\theta = 1 - 2{\sin
^2}\theta $.
Finding the value of$\sin \left( {\dfrac{{11\pi }}{6}} \right)$:
Now let’s assume $\sin \left( {\dfrac{{11\pi }}{6}} \right) = \sin a......................\left( {ii} \right)$
So similarly we can write $\;\cos a = \cos \left( {\dfrac{{11\pi }}{6}} \right)$
$ \Rightarrow \cos 2a = \cos \left( {\dfrac{{22\pi }}{6}} \right)$
We have to find the value of $\cos \left( {\dfrac{{22\pi }}{6}} \right)$such that by using the identity we can then solve the question.
So finding the value of$\cos \left( {\dfrac{{22\pi }}{6}} \right)$:
We know that $\cos \left( {\dfrac{{22\pi }}{6}} \right)$can be written as
$
\cos \left( {\dfrac{{12\left( {2\pi } \right)}}{6} - \dfrac{{2\pi }}{6}} \right) = \cos \left( {2\left( {2\pi }
\right) - \dfrac{{2\pi }}{6}} \right).................(iii) \\
\\
$
So from (iii) we know that \[\cos \left( {2\left( {2\pi } \right) - \dfrac{{2\pi }}{6}} \right)\]would be in
the IV Quadrant where cosine is positive.
Such that:
\[\cos \left( {2\left( {2\pi } \right) - \dfrac{{2\pi }}{6}} \right) = \cos \left( {\dfrac{{2\pi }}{6}}
\right)..................(iv)\]
Also we know \[\cos \left( {\dfrac{{2\pi }}{6}} \right) = \cos \left( {\dfrac{\pi }{3}} \right) =
\dfrac{1}{2}....................(v)\]
Now by using the identity $\;\cos 2\theta = 1 - 2{\sin ^2}\theta $we get
$
\Rightarrow \cos 2a = 1 - 2{\sin ^2}a = \dfrac{1}{2} \\
\Rightarrow 2{\sin ^2}a = 1 - \dfrac{1}{2} = \dfrac{1}{2} \\
\Rightarrow {\sin ^2}a = \dfrac{1}{4} \\
$
Now from (ii) \[\sin \left( {\dfrac{{11\pi }}{6}} \right) = \sin a\]
$
\Rightarrow \sin {\left( {\dfrac{{11\pi }}{6}} \right)^2} = \dfrac{1}{4} \\
\Rightarrow \sin \left( {\dfrac{{11\pi }}{6}} \right) = - \dfrac{1}{2} \\
$
Now we know that$\csc x = \dfrac{1}{{\sin x}}$, such that:
$\csc \left( {\dfrac{{11\pi }}{6}} \right) = \dfrac{1}{{\sin \left( {\dfrac{{11\pi }}{6}} \right)}} =
\dfrac{1}{{\left( { - \dfrac{1}{2}} \right)}} = - 2$
Therefore the value of$\csc \left( {\dfrac{{11\pi }}{6}} \right)\;{\text{is}}\; - 2$.
Note:
General things to be known for solving this question.
I Quadrant:$0\; - \;\dfrac{\pi }{2}$ All values are positive.
II Quadrant:$\dfrac{\pi }{2}\; - \;\pi $ Only Sine and Cosec values are positive.
III Quadrant:$\pi \; - \;\dfrac{{3\pi }}{2}$ Only Tan and Cot values are positive.
IV Quadrant:$\dfrac{{3\pi }}{2}\; - \;2\pi $ Only Cos and Sec values are positive.
Some other equations needed for solving these types of problem are:
\[
\sin \left( {2\theta } \right) = 2\sin \left( \theta \right)\cos \left( \theta \right) \\
\cos \left( {2\theta } \right) = {\cos ^2}\left( \theta \right)-{\sin ^2}\left( \theta \right) = 1-2{\text{
}}{\sin ^2}\left( \theta \right) = 2{\text{ }}{\cos ^2}\left( \theta \right)-1 \\
\]
Also while approaching a trigonometric problem one should keep in mind that one should work with one side at a time and manipulate it to the other side. The most straightforward way to do this is to simplify one side to the other directly.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE