Answer
Verified
423.9k+ views
Hint: First convert the angle into degrees. Then use the relation between sin(x) and cosec(x) to write the given trigonometric ratio in terms of sine. Later, use the half angle formula to find the value of the sine of the given angle.
Formula used:
$\text{cosec(}x)=\dfrac{1}{\sin (x)}$
${{\sin }^{2}}\left( \dfrac{x}{2} \right)=\dfrac{1-\cos x}{2}$, where x is an angle.
Complete step by step solution:
Let us first convert the given angle into degrees. We know that an angle of $\pi $ radians is equal to 180 degrees.Therefore, an angle of $\dfrac{\pi }{12}$ radians is equal to
$\dfrac{180}{12}=15$ degrees.
This means that we have to calculate the value of $\text{cosec(1}{{\text{5}}^{\circ }}\text{)}$.
We know that $\text{cosec(}x)=\dfrac{1}{\sin (x)}$. Therefore,
$\text{cosec(1}{{\text{5}}^{\circ }})=\dfrac{1}{\sin (\text{1}{{\text{5}}^{\circ }})}$ …. (i)
Now, we shall find the value of $\sin (\text{1}{{\text{5}}^{\circ }})$ with the help of the half angle formula. The half angle formula says that
${{\sin }^{2}}\left( \dfrac{x}{2} \right)=\dfrac{1-\cos x}{2}$ …. (ii).
In this case, $\dfrac{x}{2}={{15}^{\circ }}$.Then, this means that $x={{30}^{\circ }}$. Substitute the value x and half of x in equation (ii).Then, we get that
${{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{1-\cos ({{30}^{\circ }})}{2}$ …. (iii)
Now, we know that $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$.
Now, substitute this value in equation (iii).With this we get that,
${{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{1-\dfrac{\sqrt{3}}{2}}{2}$
If we further solve the above equation, then we get that
${{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{\dfrac{2-\sqrt{3}}{2}}{2}\\
\Rightarrow{{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{2-\sqrt{3}}{4}$
Now, let us take the square root on both the sides of the equation. Therefore, we get that
$\sin \left( {{15}^{\circ }} \right)=\pm \sqrt{\dfrac{2-\sqrt{3}}{4}}\\
\Rightarrow\sin \left( {{15}^{\circ }} \right) =\pm \dfrac{\sqrt{2-\sqrt{3}}}{2}$
But here 15 degrees is an acute angle and we know that sine of an acute angle is a positive number. Therefore, we discard the negative value, i.e. $\sin \left( {{15}^{\circ }} \right)=-\dfrac{\sqrt{2-\sqrt{3}}}{2}$ and consider $\sin \left( {{15}^{\circ }} \right)=\dfrac{\sqrt{2-\sqrt{3}}}{2}$.
Now, substitute this value in equation (i).
$\text{cosec(1}{{\text{5}}^{\circ }})=\dfrac{1}{\dfrac{\sqrt{2-\sqrt{3}}}{2}}\\
\therefore\text{cosec(1}{{\text{5}}^{\circ }})=\dfrac{2}{\sqrt{2-\sqrt{3}}}$
Hence, we found that $\text{cosec}\left( \dfrac{\pi }{12} \right)=\text{cosec}\left( {{15}^{\circ }} \right)=\dfrac{2}{\sqrt{2-\sqrt{3}}}$.
Note: Sometimes in some questions, the formulae may help to solve the questions.
$\sin (2\pi +\theta )=\sin (\theta )$
$\Rightarrow\cos (2\pi +\theta )=\cos (\theta )$
$\Rightarrow\sin (\pi +\theta )=-\sin (\theta )$
$\Rightarrow\cos (\pi +\theta )=-\cos (\theta )$
$\Rightarrow\sin (-\theta )=-\sin (\theta )$
$\Rightarrow\cos (-\theta )=\cos (\theta )$
With the help of these formulae you can find the formulae for the other trigonometric ratios as all the other trigonometric ratios depend on sine and cosine.
Formula used:
$\text{cosec(}x)=\dfrac{1}{\sin (x)}$
${{\sin }^{2}}\left( \dfrac{x}{2} \right)=\dfrac{1-\cos x}{2}$, where x is an angle.
Complete step by step solution:
Let us first convert the given angle into degrees. We know that an angle of $\pi $ radians is equal to 180 degrees.Therefore, an angle of $\dfrac{\pi }{12}$ radians is equal to
$\dfrac{180}{12}=15$ degrees.
This means that we have to calculate the value of $\text{cosec(1}{{\text{5}}^{\circ }}\text{)}$.
We know that $\text{cosec(}x)=\dfrac{1}{\sin (x)}$. Therefore,
$\text{cosec(1}{{\text{5}}^{\circ }})=\dfrac{1}{\sin (\text{1}{{\text{5}}^{\circ }})}$ …. (i)
Now, we shall find the value of $\sin (\text{1}{{\text{5}}^{\circ }})$ with the help of the half angle formula. The half angle formula says that
${{\sin }^{2}}\left( \dfrac{x}{2} \right)=\dfrac{1-\cos x}{2}$ …. (ii).
In this case, $\dfrac{x}{2}={{15}^{\circ }}$.Then, this means that $x={{30}^{\circ }}$. Substitute the value x and half of x in equation (ii).Then, we get that
${{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{1-\cos ({{30}^{\circ }})}{2}$ …. (iii)
Now, we know that $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$.
Now, substitute this value in equation (iii).With this we get that,
${{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{1-\dfrac{\sqrt{3}}{2}}{2}$
If we further solve the above equation, then we get that
${{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{\dfrac{2-\sqrt{3}}{2}}{2}\\
\Rightarrow{{\sin }^{2}}\left( {{15}^{\circ }} \right)=\dfrac{2-\sqrt{3}}{4}$
Now, let us take the square root on both the sides of the equation. Therefore, we get that
$\sin \left( {{15}^{\circ }} \right)=\pm \sqrt{\dfrac{2-\sqrt{3}}{4}}\\
\Rightarrow\sin \left( {{15}^{\circ }} \right) =\pm \dfrac{\sqrt{2-\sqrt{3}}}{2}$
But here 15 degrees is an acute angle and we know that sine of an acute angle is a positive number. Therefore, we discard the negative value, i.e. $\sin \left( {{15}^{\circ }} \right)=-\dfrac{\sqrt{2-\sqrt{3}}}{2}$ and consider $\sin \left( {{15}^{\circ }} \right)=\dfrac{\sqrt{2-\sqrt{3}}}{2}$.
Now, substitute this value in equation (i).
$\text{cosec(1}{{\text{5}}^{\circ }})=\dfrac{1}{\dfrac{\sqrt{2-\sqrt{3}}}{2}}\\
\therefore\text{cosec(1}{{\text{5}}^{\circ }})=\dfrac{2}{\sqrt{2-\sqrt{3}}}$
Hence, we found that $\text{cosec}\left( \dfrac{\pi }{12} \right)=\text{cosec}\left( {{15}^{\circ }} \right)=\dfrac{2}{\sqrt{2-\sqrt{3}}}$.
Note: Sometimes in some questions, the formulae may help to solve the questions.
$\sin (2\pi +\theta )=\sin (\theta )$
$\Rightarrow\cos (2\pi +\theta )=\cos (\theta )$
$\Rightarrow\sin (\pi +\theta )=-\sin (\theta )$
$\Rightarrow\cos (\pi +\theta )=-\cos (\theta )$
$\Rightarrow\sin (-\theta )=-\sin (\theta )$
$\Rightarrow\cos (-\theta )=\cos (\theta )$
With the help of these formulae you can find the formulae for the other trigonometric ratios as all the other trigonometric ratios depend on sine and cosine.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE