
Find the value of $\cos \theta $,If angle $\theta =-30{}^\circ $
Answer
605.1k+ views
Hint: Here we are given angle $\theta =-30{}^\circ $ and we have to find the value of $\cos \theta $ . So for that substitute the value of $\theta =-30{}^\circ $ in $\cos \theta $. Try it, you will get the answer.
Complete step-by-step answer:
The trigonometric functions (also called circular functions, angle functions, or trigonometric functions) are real functions that relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena, through Fourier analysis.
The most widely used trigonometric functions are the sine, the cosine, and the tangent. Their reciprocals are respectively the cosecant, the secant, and the cotangent, which are less used in modern mathematics.
The cosine function, along with sine and tangent, is one of the three most common trigonometric functions. In any right triangle, the cosine of an angle is the length of the adjacent side (A) divided by the length of the hypotenuse (H). In a formula, it is written simply as '$\cos $'. $\cos $ function (or cosine function) in a triangle is the ratio of the adjacent side to that of the hypotenuse. The cosine function is one of the three main primary trigonometric functions and it is itself the complement of sine (cos + sine).
The cosine graph or the cos graph is an up-down graph just like the sine graph. The only difference between the sine graph and the cos graph is that the sine graph starts from $0$ while the cos graph starts from $90{}^\circ $ (or $\dfrac{\pi }{2}$).
We are given angle $\theta =-30{}^\circ $ .
So now we have to find $\cos \theta $ .
Let us substitute the value $\theta =-30{}^\circ $ in $\cos \theta $, we get,
\[\cos \theta =\cos (-30{}^\circ )\]
We know that, $\cos (-a)=\cos a$.
\[\cos \theta =\cos (-30{}^\circ )=\cos 30{}^\circ =\dfrac{\sqrt{3}}{2}\]
Here, we get the value of $\cos \theta $ at $\theta =-30{}^\circ $ is $\dfrac{\sqrt{3}}{2}$ .
Note: Read the question carefully. Do not make silly mistakes. Don’t get confused while solving the problem. Your concept regarding trigonometric functions should be clear. Do not jumble yourself while simplifying.
Complete step-by-step answer:
The trigonometric functions (also called circular functions, angle functions, or trigonometric functions) are real functions that relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena, through Fourier analysis.
The most widely used trigonometric functions are the sine, the cosine, and the tangent. Their reciprocals are respectively the cosecant, the secant, and the cotangent, which are less used in modern mathematics.
The cosine function, along with sine and tangent, is one of the three most common trigonometric functions. In any right triangle, the cosine of an angle is the length of the adjacent side (A) divided by the length of the hypotenuse (H). In a formula, it is written simply as '$\cos $'. $\cos $ function (or cosine function) in a triangle is the ratio of the adjacent side to that of the hypotenuse. The cosine function is one of the three main primary trigonometric functions and it is itself the complement of sine (cos + sine).
The cosine graph or the cos graph is an up-down graph just like the sine graph. The only difference between the sine graph and the cos graph is that the sine graph starts from $0$ while the cos graph starts from $90{}^\circ $ (or $\dfrac{\pi }{2}$).
We are given angle $\theta =-30{}^\circ $ .
So now we have to find $\cos \theta $ .
Let us substitute the value $\theta =-30{}^\circ $ in $\cos \theta $, we get,
\[\cos \theta =\cos (-30{}^\circ )\]
We know that, $\cos (-a)=\cos a$.
\[\cos \theta =\cos (-30{}^\circ )=\cos 30{}^\circ =\dfrac{\sqrt{3}}{2}\]
Here, we get the value of $\cos \theta $ at $\theta =-30{}^\circ $ is $\dfrac{\sqrt{3}}{2}$ .
Note: Read the question carefully. Do not make silly mistakes. Don’t get confused while solving the problem. Your concept regarding trigonometric functions should be clear. Do not jumble yourself while simplifying.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

